Site hosted by Angelfire.com: Build your free website today!

 

Ophthalmology  

 

Ophthalmology (lat., ophthalmos, “eye”) is branch of medicine concerned with the study of the eyes, their physiology and structure and the diseases and conditions affecting them. Unlike optometrists, ophthalmologists are required to have a medical degree. In addition to eye infections and other disorders, ophthalmologists are concerned with refraction, orthoptics (the treatment of defective visual habits), the prevention of blindness, and the care of blind people.

 

The letter was sent from the first Afro-Asian Ophthalmology Congress in 1958

The eyes of Horus were regarded as a symbol for light and darkness. His right eye is depicted as representing the sun and his left eye the moon. Horus was the protective god from diseases.  

 

The entire eye, often called the eyeball, is a spherical structure approximately 2.5 cm in diameter with a pronounced bulge on its forward surface. The outer part of the eye is composed of three layers of tissue. The outside layer is the sclera, a protective coating. It covers about five-sixths of the surface of the eye. At the front of the eyeball it is continuous with the bulging, transparent cornea. The middle layer of the coating of the eye is the choroid, a vascular layer lining the posterior three-fifths of the eyeball. The choroid is continuous with the ciliary body and with the iris, which lies at the front of the eye. The innermost layer is the light-sensitive retina.

 

The cornea is a tough, five-layered membrane through which light is admitted to the interior of the eye. Behind the cornea is a chamber filled with clear, watery fluid, the aqueous humor, which separates the cornea from the crystalline lens. The lens itself is a flattened sphere constructed of a large number of transparent fibers arranged in layers. It is connected by ligaments to a ring-like muscle, called the ciliary muscle, which surrounds it. The ciliary muscle and its surrounding tissues form the ciliary body. This muscle, by flattening the lens or making it more nearly spherical, changes its focal length.

 

The pigmented iris hangs behind the cornea in front of the lens, and has a circular opening in its centre. The size of its opening, the pupil, is controlled by a muscle around its edge. This muscle contracts or relaxes, making the pupil larger or smaller, to control the amount of light admitted to the eye.

 

Behind the lens the main body of the eye is filled with a transparent, jelly-like substance, the vitreous humor, enclosed in a thin sac, the hyaloid membrane. The pressure of the vitreous humor keeps the eyeball distended.

 

 

Albrecht von Graefe 1828 – 1870

 

Graefe Point :

 

 

Graefe Operation : 

 

 

Graefe Reflex :

 

Graefe Syndrome :

 

 

Graefe Sign :

 

Point near foramen supraorbitale, by pressing this point convulsion of the eyelid.

 

1. Operation for the correction of squint

2. Glaucoma operation

 

Orbicularis phenomena

 

Because of degeneration in middle brain, paralysis both side of the eye musculature.

 

Fall behind of eyelid, Sign of Basedow Disease.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The retina is a complex layer, composed largely of nerve cells. The light-sensitive receptor cells lie on the outer surface of the retina in front of a pigmented tissue layer. These cells take the form of rods or cones packed closely together like matches in a box. Directly behind the pupil is a small yellow-pigmented spot, the macula lutea, in the centre of which is the fovea centralis, the area of greatest visual acuity of the eye. At the centre of the fovea, the sensory layer is composed entirely of cone-shaped cells. Around the fovea both rod-shaped and cone-shaped cells are present, with the cone-shaped cells becoming fewer towards the periphery of the sensitive area. At the outer edges are only rod-shaped cells.

 

Where the optic nerve enters the eyeball, below and slightly to the inner side of the fovea, a small round area of the retina exists that has no light-sensitive cells. This optic disc forms the blind spot of the eye.

 

Functioning of the Eye

In general the eyes of all animals resemble simple cameras in that the lens of the eye forms an inverted image of objects in front of it on the sensitive retina, which corresponds to the film in a camera.

 

Focusing the eye, as mentioned above, is accomplished by a flattening or thickening (rounding) of the lens. The process is known as accommodation. In the normal eye accommodation is not necessary for seeing distant objects. The lens, when flattened by the suspensor ligament, brings such objects to focus on the retina. For nearer objects the lens is increasingly rounded by ciliary muscle contraction, which relaxes the suspensor ligament. A young child can see clearly at a distance as close as 6.3 cm, but with increasing age the lens gradually hardens, so that the limits of close seeing are approximately 15 cm at the age of 30 and 40 cm at the age of 50. In the later years of life most people lose the ability to accommodate their eyes to distances within reading or close working range. This condition, known as presbyopia, can be corrected by the use of special convex lenses for the near range.

 

Structural differences in the size of the eye cause the defects of hyperopia, or long-sightedness, and myopia, or shortsightedness.

 

As mentioned above, the eye sees with greatest clarity only in the region of the fovea due to the neural structure of the retina. The cone-shaped cells of the retina are individually connected to other nerve fibers, so that stimuli to each individual cell are reproduced and, as a result, fine details can be distinguished. The rod-shaped cells, on the other hand, are connected in groups so that they respond to stimuli over a general area. The rods, therefore, respond to small total light stimuli, but do not have the ability to separate small details of the visual image. The result of these differences in structure is that the visual field of the eye is composed of a small central area of great sharpness surrounded by an area of lesser sharpness. In the latter area, however, the sensitivity of the eye to light is great. As a result, dim objects can be seen at night on the peripheral part of the retina when they are invisible to the central part

 

 

The mechanism of seeing at night involves the sensitization of the rod cells by means of a pigment, called visual purple or rhodopsin, that is formed within the cells. Vitamin A is necessary for the production of visual purple; a deficiency of this vitamin leads to night blindness. Visual purple is bleached by the action of light and must be reformed by the rod cells under conditions of darkness. Hence a person who steps from sunlight into a darkened room cannot see until the pigment begins to form. When the pigment has formed and the eyes are sensitive to low levels of illumination, the eyes are said to be dark-adapted.

 

A brownish pigment present in the outer layer of

the retina serves to protect the cone cells of the retina from overexposure to light. If bright light strikes the retina, granules of this brown pigment migrate to the spaces around the cone cells, sheathing and screening them from the light, thereby making the eyes light-adapted.

                   Georg Bartisch 1535 – 1607

               Pioneer of operative Ophthalmology

 

Subjectively, a person is not conscious that the visual field consists of a central zone of sharpness surrounded by an area of increasing fuzziness. The reason is that the eyes are constantly moving, bringing first one part of the visual field and then another to the fovea region as the attention is shifted from one object to another. These motions are accomplished by six muscles that move the eyeball upwards, downwards, to the left, to the right, and obliquely. The motions of the eye muscles are extremely precise; the estimation has been made that the eyes can be moved to focus on no less than 100,000 distinct points in the visual field. The muscles of the two eyes, working together, also serve the important function of converging the eyes on any point being observed, so that the images of the two eyes coincide. When convergence is non-existent or faulty, double vision results. The movement of the eyes and fusion of the images also play a part in the visual estimation of size and distance.

 

Protective Structures

Several structures, not parts of the eyeball, contribute to the protection of the eye. The most important of these are the eyelids, two folds of skin and tissue, upper and lower, that can be closed by means of muscles to form a protective covering over the eyeball against excessive light and mechanical injury. The eyelashes, a fringe of short hairs growing on the edge of either eyelid, act as a screen to keep dust particles and insects out of the eyes when the eyelids are partly closed. Inside the eyelids is a thin protective membrane, the conjunctiva, which doubles over to cover the visible sclera. Each eye also has a lacrimal organ, or tear gland, situated at the outside corner of the eye. The salty secretion of these glands lubricates the forward part of the eyeball when the eyelids are closed and flushes away any small dust particles or other foreign matter on the surface of the eye. Normally the eyelids of human eyes close by reflex action about every six seconds, but if dust reaches the surface of the eye and is not washed away, the eyelids blink more often, producing more tears. On the edges of the eyelids are a number of the Meibomian glands, small glands which produce a fatty secretion that lubricates the eyelids themselves and the eyelashes. The eyebrows, located above each eye, also have a protective function in soaking up or deflecting perspiration or rain and preventing moisture from running into the eyes. The hollow socket in the skull in which the eye is set is called the orbit. The bony edges of the orbit, the frontal bone, and the cheekbone protect the eye from mechanical injury by blows or collisions.

 

                                                                                                   Jules Gonin 1870 – 1935

He was world-famous with retina operations.

Eye Diseases

Eye disorders may be classified according to the part of the eye in which the disorders occur. The most common disease of the eyelids is hordeolum, known commonly as a sty—an infection of the follicles of the eyelashes, usually caused by infection by staphylococci. Internal sties that occur inside the eyelid, not on its edge, are similar infections of the lubricating Meibomian glands. Abscesses of the eyelids are sometimes the result of penetrating wounds. Congenital defects of the eyelids occasionally occur, including coloboma, or cleft eyelid, and ptosis, a drooping of the upper lid. Among acquired defects are symblepharon, an adhesion of the inner surface of the eyelid to the eyeball, which is most frequently the result of burns. Entropion, the turning of the eyelid inward towards the cornea, and ectropion, the turning of the eyelid outward, can be caused by scars or by spasmodic muscular contractions resulting from chronic irritation. The eyelids also are subject to several diseases of the skin such as eczema and acne, and to both benign and malignant tumors. Another common eye disease is infection of the conjunctiva, the mucous membranes covering the inside of the eyelids and the outside of the eyeball.

 

Conjunctivitis is an inflammation of the conjunctiva of one or both eyes, characterized by redness, itching, and discharge. Several different forms of this disorder exist and, in infective cases, it may be caused by either bacteria or viruses. Similar symptoms can also occur during an allergic reaction (for example, in hay fever).

 

Trachoma is contagious infection of the eye, caused by a bacteria-like parasite named Chlamydia trachomatis, which is related to the organism that causes psittacosis. Infection is spread by the bite of a host fly. Characterized by hard pustules or granular excrescences on the inner surface of the eyelids, inflammation of the membrane, and subsequent involvement of the cornea, trachoma is a major cause of blindness in some villages in northern Africa. It most commonly occurs among populations living under poor sanitary conditions.

 

Cataract is opaque condition of the lens of the eye or of its capsule. Its position behind the pupil readily distinguishes it from opacities of the cornea. Cataract may affect the lens alone (lenticular), or the front or back of the capsule of the lens (capsular), or both lens and capsule (capsulolenticular). Cataract is painless and unaccompanied by inflammation. It causes blindness by obstructing the passage of light, but the patient can distinguish light from darkness.

 

Disorders of the cornea, which may result in a loss of transparency and impaired sight, are usually the result of injury. However, they may also occur as a secondary result of disease; for example, oedema, or swelling, of the cornea sometimes accompanies glaucoma.

 

The choroid, or middle coat of the eyeball, contains most of the blood vessels of the eye; it is often the site of secondary infections from toxic conditions and bacterial infections such as tuberculosis and syphilis. Cancer may develop in the choroid tissues or may be carried to the eye from malignancies elsewhere in the body. The light-sensitive retina, which lies just beneath the choroid, is also subject to the same type of infections. The cause of retrolental fibroplasia, however—a disease of premature infants that causes retinal detachment and partial blindness—is unknown, but is associated with blood vessel abnormalities. Retinal detachment may also follow cataract surgery. Laser beams are sometimes used to weld detached retinas back onto the eye. Another retinal disease, called macular degeneration, which affects the central retina, is a frequent cause of loss of vision in some older persons.

 

The optic nerve contains the retinal nerve fibers, which carry visual impulses to the brain. The retinal circulation is carried by the central artery and vein, which lie in the optic nerve. The sheath of the optic nerve communicates with the cerebral lymph spaces. Inflammation of that part of the optic nerve situated within the eye is known as optic neuritis, or papillitis; when inflammation occurs in the part of the optic nerve behind the eye, the disease is called retro bulbar neuritis. When pressure in the skull is elevated, or increased in intracranial pressure, as in brain tumors, oedema and swelling of the optic disc occur where the nerve enters the eyeball, a condition known as papilloedema.

 

Color Blindness is defect of vision affecting the ability to distinguish colors, occurring mostly in males. Color blindness is caused by a defect in the retina or in other nerve portions of the eye. The first detailed report on this condition was written by the British chemist John Dalton, who was himself afflicted with it.

 

John Dalton 1766 – 1844

British chemist and physicist, who developed the atomic theory upon which modern physical science is founded. He presented a paper on color blindness, a condition from which Dalton himself suffered. This paper was the earliest description of this phenomenon, which became known as Daltonism.

 

Blindness

 

Corneal Transplants

Corneal tissue can be taken from deceased persons for eye grafts. Blindness caused by cloudiness or scarring of the cornea can sometimes be cured by surgical removal of the affected portion of the corneal tissue. With present techniques, such tissue can be kept alive for only 48 hours, but current experiments in preserving human corneas by freezing give hope of extending its useful life for months. Vitreous humor, the liquid within the larger chamber of the eye, can also be preserved and distributed for use in treatment of detached retinas.

 

Carl Theodor 1839 – 1909

founded in 1896 ophthalmologic hospital in Munich