Steve Wolfram (2002) espouses what I would call a "neo-animist" position with regard to the occurrence of mind (or "intelligence", to use his preferred terminology). He argues that although the idea of animism - which he defines as the view "that systems with complex behavior in nature must be driven by the same kind of essential spirit as humans ... has been seen as naive and counter to progress in science", this idea is actually "crucial" to science (2002, p. 845).
Wolfram's argument can be expressed in six steps. First, if anything can be said to be the distinguishing hallmark of intelligence, it has to be complex behaviour. Wolfram explicitly equates intelligence with complexity when he writes:
Yet in Western thought there is still a strong belief that there must be something fundamentally special about us [human beings]. And nowadays the most common assumption is that it must have to do with the level of intelligence or complexity that we exhibit (2002, p. 844, italics mine).
Second, complex behaviour can be defined as the ability to perform sophisticated calculations. Hence, "intelligence is associated with the ability to do sophisticated calculations" (2002, p. 822). Here, "calculation" is meant to be a general term. It does not matter whether the calculation is performed with numbers, the black and white cells in a cellular automaton, text, images or anything else. For example, the particles in a fluid could be used to perform a calculation. In fact, "it is possible to think of any process that follows definite rules as being a computation - regardless of the elements it involves" (2002, p. 716). This implies that we can think of natural processes as computations, where the rules are defined by the laws of nature, instead of programs written by human beings (2002, p. 716). The rules can be described as mappings or functions that take a system from one state to another. In other words, "all processes, whether they are produced by human effort or occur spontaneously in nature, can be viewed as computations" (2002, p. 715).
This invites the question: how sophisticated do the calculations performed by a system have to be in order for it to be called intelligent? The third step in Wolfram's argument is contained in his Principle of Computational Equivalence (or P.C.I.), which states that there is in fact an upper limit to complex behaviour in our universe, and that anything that achieves this upper limit can be considered intelligent. This upper limit of complexity is found in universal systems. A universal system is one that can be used to perform any calculation - that is, one that can be programmed to follow any rule - so long as the function described by the rule only applies to a finite number of states (2002, pp 642 - 644, 721). (There could conceivably be systems that can exist in any one of an infinite number of different states, but Wolfram argues that there is no reason to suppose such systems actually occur in nature.) So, anything that can be considered as a universal system qualifies as intelligent.
Fourth, Wolfram's Principle of Computational Equivalence also implies that any entity possessing intelligence - i.e. any universal system - is as smart as any other: "once one has a universal system such a system can emulate any of the kinds of systems that we considered - even ones whose construction is more complicated than its own" (2002, p. 720). Some universal systems may require more time and resources to complete their calculations than others, but any of them can eventually solve any problem.
Fifth, the same principle implies that universal systems are surprisingly commonplace: "a vast range of systems - even ones with very simple underlying rules - should be equivalent [to universal systems] in sophistication of the calculations they perform" (2002, p. 822). More precisely, it says that "unless it is obviously simple essentially any behavior that one sees should correspond to a computation of equivalent sophistication" (2002, p. 726, italics mine). In other words, "any piece of complex behavior that we see ... is at some level equivalent" (2002, p. 726). Not only do some artificial non-biological systems (e.g. computers) exhibit this kind of complexity, but many kinds of natural phenomena, such as the weather, or the flow of sand in a sand pile, or the motion of a turbulent fluid (2002, p. 822), also do so.
Sixth, it follows that intelligence can be found wherever there are systems with the ability to perform complex calculations. Since such systems are commonplace in nature, it follows that intelligence is ubiquitous in the cosmos. Wolfram approves of the primitive, animist notion that the weather has a mind of its own: when we say this, "we are in effect attributing intelligence to the motion of a fluid" (2002, p. 822).
Before taking issue with Wolfram, I should acknowledge that computation, which Wolfram defines broadly as behaviour that can be described by a rule, is a useful starting point for any discussion of mental states. We cannot discern meaning (let alone intelligence) in an entity's behaviour unless we can first recognise a pattern in it. This leads me to propose my first conclusion regarding cognitive mental states:
N.1 Our identification of computations in an entity, or rule-governed transformations that take it from one state to another, is a necessary condition for our being able to ascribe cognitive mental states to it.
The term "entity" is employed very loosely here, to cover individuals, their parts, aggregates or systems in general. The initial and final states can be regarded as the "input" and "output" of the computation.
The above conclusion describes a condition for our being able to recognise intelligence. What it says is that we should never impute mental states to an entity whose behaviour is, from our standpoint, totally devoid of any underlying pattern. (There may well be entities whose behaviour is too complex for us to discern the rules underlying them. Wolfram's P.C.I. entails that our brains, being universal systems, should eventually be able to discover the rules, but "eventually" may be a lot longer than a human lifespan!)
Since (as Wolfram remarks) computations are ubiquitous in nature, we can also formulate a general conclusion regarding scope:
R.1 All natural entities and natural processes can be described according to Wolfram's computational stance: that is, the set of natural entities which perform computations is universal.
Evaluation of Wolfram's arguments
Some critics might take issue with the second and third steps in Wolfram's argument - the equation of intelligence with the ability to calculate, and his denial that there are any systems exist that are capable of occupying any one of an infinite number of different states. For example, mathematicians sometimes make intuitive generalisations that defy reduction to concrete calculations. (Wolfram's own conjecture that almost all the systems in our world are universal systems is a case in point. Is this utterance a computation?) And yet, surely these generalisations qualify as intelligent utterances when made by their originators. Wolfram's response is that intelligence has to manifest itself in a concrete, physical process in order to generate results (2002, p. 721). In other words, a purely ggeneralh intelligence would be utterly unrecognisable. Do we have any grounds for believing that every system in existence is finite, as Wolfram believes? No, but since scientists have hitherto been able to describe phenomena in the cosmos without having to posit systems capable of occupying an infinite number of states, we can set them aside on methodological grounds (Occam's razor).
My own comment on Wolfram's remarkable tour de force is that the first step in the argument - the equation of intelligence with complexity - is the most questionable, because it excludes any notion of purpose. With regard to any intelligent behaviour, it is always legitimate to ask what it is for. What is the intelligent agent trying to do? And in fact, the reason why we tend not to regard phenomena such as the wind as intelligent is that there is no discernible purpose behind them.
To his credit, Wolfram is quite explicit about excluding purpose from his definition of intelligence, on the grounds that it is too hard to discern, even when we are dealing with the behaviour of other human beings. For instance, do we have any reliable means of distinguishing the utterances of someone speaking a foreign tongue from those of someone babbling in gobbledegook (2002, p. 825)? And what about bird song? It is very complex, but no-one can be sure if it really means anything (2002, pp. 826 - 827). Again, if an alien civilisation wished to send us a message, why should they not use the wind or any other medium to encode it? We can take Wolfram's scepticism a step further and ask whether aliens themselves could be embodied in the wind.
Let us start with human language first. As Wittgenstein argued (Philosophical Investigations I 19, 23), the meaning of linguistic utterances can only be understood with reference to their usersfform of life. A tape in Sanskrit may sound like gobbledegook, but in practice, the way we learn Sanskrit, or any other language, is to see what its users do with it: greet, command, offer, request, challenge, describe, narrate and so on. In order to discern whether one of these glanguage gamesh is being played, we have to thoroughly familiarise ourselves with the way of life of the people speaking the language. gGobbledegookh cannot be a language for the very simple reason that nobody does anything with it.
Wittgenstein's notion of a gform of lifeh also suggests we cannot decide whether bird song means anything until we have familiarised ourselves with how birds live in their natural environment, as ethologists have attempted to do. We shall return to this question in chapter 4.
As for alien messages, it is conceivable that they might literally be blowing in the wind, but if Wittgenstein's proposal is correct, we would have to meet the aliens first and immerse ourselves in their way of life before we could recognise their messages, let alone understand them.
But, it may be asked, what if the aliens are right under our nose: what if they, too, are blowing in the wind? The correct response to this proposal is to ask what kind of systems could embody intelligence - as opposed to merely serving as a medium for conveying a message by an intelligence? Dennett (1997) has offered some insights that help to address this question. According to Dennett, embodied minds can be regarded as agents, and the best way to discover agency at work is to look for what he calls intentional systems.
Back to Chapter 2 Previous page Next page