
SIMULATION OF A MULTIPATH ROUTING PROTOCOL FOR
ADHOC NETWORKS

A PROJECT REPORT

Submitted in partial fulfillment of the requirement for the award of the
Degree of

Bachelor of Engineering
in

Computer Science and Engineering

to the
University of Madras

by

KRISHNAVENI.S 8903885
VIDHYASAGARI.S 8903909

Under the Guidance of
Mrs.S.SUMATHY M.E.,

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

VELLORE INSTITUTE OF TECHNOLOGY

VELLORE - 632014
TAMIL NADU, INDIA

MARCH 2003

 i i

VELLORE INSTITUTE OF TECHNOLOGY

VELLORE - 632014

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

BONAFIDE CERTIFICATE

This is to certify that the project report titled Simulation of a

Multipath routing protocol for Adhoc networks is an approved

record of work done by Ms. VIDHYA SAGARI.S Register number

8903885 in the partial fulfillment for the award of the Degree of Bachelor

of Engineering in Computer Science and Engineering branch under the

University of Madras, during the year 2002-2003.

Guide Head of the

Department

(Mrs.S.Sumathy) (Dr.K.Ganesan)

Date

Submitted for the university examination held

on________________________

Internal Examiner External

Examiner

 i ii

 ACKNOWLEDGEMENT

First of all, we are indebted to the almighty for having showered upon us

His blessings throughout. The satisfaction and euphoria that accompany

the successful completion of any task would be incomplete without

thanking the people who have all made this possible. We consider it our

privilege to express our sincere gratitude and respect to all those who

guided and inspired us in the completion of the project.

We are very thankful to Mr.G.Viswanathan, chancellor of VIT for giving us

this wonderful opportunity to study in his college and utilize all the facilities

to the fullest. We express our thanks to the prochancellor

Mr.P.Radhakrishnan,the vice chancellor Mr.P.Selvam and the principal

Mr.Anand.A.Samuel. Our sincere thanks to Dr.K.Ganesan, HOD,

Computer Science and engineering department, VIT.

We express our deep sense of gratitude to our guide Mrs.S.Sumathy,

lecturer, Computer Science and engineering department, VIT for

constantly motivating, guiding and encouraging us throughout the project

tenure. We would have been nowhere without her valuable advice in times

of need.

Our heartfelt sincere thanks to Dr.S.Saravanan, senior lecturer,

Department of information technology, VIT for having given us the crux

idea of the entire project and guided us from the beginning.

Most importantly, we are grateful to our beloved parents and friends who

have been a mental support throughout this project.

 iv

 ABSTRACT

Mobile Communication is the present trend in the world of

networking. Adhoc Networks is a specialised area of research in this

field. This network does not rely on a fixed infrastructure and works in a

shared wireless media .The topology of the adhoc network keeps on

changing rapidly and so any routing decision has to be taken “on the fly”.

The protocols used in the Adhoc Networks address certain specialised

issues like node mobility, potentially very large number of nodes and

limited communication resources (bandwidth and energy).

Adhoc routing protocols can generally be divided into 3 types. They are

flat routing, hierarchical routing and a geographical position based routing.

Flat routing protocols can be further classified as pro-active and reactive

types. In pro-active protocols details of all other nodes are maintained in

every other node in its routing table which is modified frequently and this

takes a considerable amount of time to converge. In reactive protocols the

path is obtained only when the source needs to transfer the data to any

other node like in protocols like. AODV and DSR.

In DSR ,eventhough multiple paths are discovered, only a single path is

used for the whole data transmission until a link break occurs on that line.

In the multipath routing protocol, all the multiple paths are used for the

entire process of data transmission. The benefit is the effective utilization

of the limited resource – Bandwidth. GloMoSim is the network simulator

used to simulate this .It is a scalable simulation environment for wireless

network system designed using parallel discrete event simulation

capability provided by Parsec.

 v

CONTENTS

CHAPTER 1

INTRODUCTION Page No

1.1 Problem definition 2
1.2 Aim 2
1.3 Objective 2
1.4 Application 2
1.5 Software configuration 3

1.5.1 GloMoSim
1.5.2 parsec

CHAPTER 2

DYNAMIC SOURCE ROUTING PROTOCOL

2.1 DSR protocol
2.1.1 Basic route discovery 7
2.1.2 Route maintenance 12

2.2 Additional route discovery features
2.2.1 Caching overheard routing information 13
2.2.2 Replying to RREQ using cached routes 13
2.2.3 Preventing Route Reply Storms 13

2.3 Additional route maintenance features
2.3.1 Packet salvaging 14
2.3.2 Queuing packets destined for a broken link 14
2.3.3 Automatic Route Shortening 14

CHAPTER 3

GLOMOSIM-NETWORK SIMULATOR

3.1 Structure of GloMoSim 16
3.2 Basic structure of source directory 17
3.3 Layers in GloMoSim 18
3.4 Details of input files used

3.4.1 application.config file 20
3.4.2 configuration file 25

 vi

CHAPTER 4

PARSEC PROGRAMMING ENVIRONMENT

4.1 Options 28
4.2 Separate Compilation 29
4.3 Common parsec Errors 29

CHAPTER 5

DESIGN

5.1 Data Flow Diagram 31
5.2 Modulewise algorithm

5.2.1 module 1-extraction of disjoint paths 32
5.2.2 module 2-load distribution 34
5.2.3 module 3-performance analysis 35

CHAPTER 6

IMPLEMENTATION DETAILS

6.1 simulation procedure in GloMoSim 37
6.2 general output statistics format 41

FUTURE ENHANCEMENT 47
CONCLUSION 48
REFERENCES 49

 vii

 INTRODUCTION

 Efficient communication through networking has become the

order of the day. Networking, till a few decades back was confined to the

wires that imposed a limitation on the positioning of users. With the

advancement of technology in strides, networking has evolved into the

wireless mode, wherein it is not required for the users to be stationary.

 In the next generation of wireless communication systems,

there will be a need for the rapid deployment of independent mobile users.

Significant examples include establishing survivable, efficient, dynamic

communication for emergency/rescue operations, disaster relief efforts,

and military networks. Such network scenarios cannot rely on centralized

and organized connectivity, and can be conceived as applications of

Mobile Ad Hoc Networks. A MANET is an autonomous collection of mobile

users that communicate over relatively bandwidth constrained wireless

links. Since the nodes are mobile, the network topology may change

rapidly and unpredictably over time. Here, routing functionality will be

incorporated into mobile nodes.

 The design of network protocols for these networks is a

complex issue. The network should be able to adaptively alter the routing

paths.This has to be designed taking into account the scarcity of the

resources. (Bandwidth, energy of nodes). A protocol that concentrates on

these criteria has been designed.

 viii

1.1 Problem Definition

 To effectively balance the load of a mobile adhoc network by

transmission of data in multiple node disjoint paths.This balancing is done

to utilize the resources of the entire network properly.

1.2 Aim

 To simulate a routing protocol for adhoc networks that

incorporates a multipath strategy in the existing library of GloMoSim

(Global mobile information system simulation library) .

1.3 Objective

 To effectively simulate the multipath routing protocol that

balances the network load over multiple node disjoint paths .

1.4 Application

 GloMoSim is a library based sequential and parallel simulator

for wireless networks. The library of GloMoSim has been built based on

the parallel discrete-event simulation capability provided by Parsec.This

project aims to contribute a multipath routing protocol to the already

existing library. We term it as the Multipath DSR.The actual application

would be in areas of research, which intend to concentrate on networks

with energy and bandwidth constraints. This protocol is applicable in

Adhoc networks which is a sort of a network built “ on the fly “ according to

 ix

the geographical positioning of the nodes. This find wide application in

areas like Defence (Military application), Emergency search and

And rescue operations and data acquisition systems.

1.5 Software configuration

1.5.1 GloMoSim

 It is a scalable simulation environment for wireless network

systems. It is designed using the parallel discrete even simulation

capability provided by Parsec. It is designed as a set of library modules,

each of which simulates a specific wireless simulation protocol in the

protocol stack.

1.5.2 Parsec

 PARSEC is a C-based discrete-event simulation language. It

adopts the process interaction approach to discrete-event simulation. An

object (also referred to as a physical process) or set of objects in the

physical system is represented by a logical process. Interactions among

physical processes (events) are modeled by time stamped message

exchanges among the corresponding logical processes.

 One of the important distinguishing features of PARSEC is its

ability to execute a discrete-event simulation model using several different

asynchronous parallel simulation protocols on a variety of parallel

architectures. PARSEC is designed to clearly separate the description of a

simulation model from the underlying simulation protocol, sequential or

parallel, used to execute it. Thus, with few modifications, a PARSEC

program may be executed using the traditional sequential (Global Event

 x

List) simulation protocol or one of many parallel optimistic or conservative

protocols.

 In addition, PARSEC provides powerful message receiving

constructs that result in shorter and more natural simulation programs.

Useful debugging facilities are available.

Note: - GloMoSim is executable only in the following operating systems

Win2000, WinNT, winxp and the parsec for the appropriate OS has to be

chosen.

 x i

 2. DYNAMIC SOURCE ROUTING PROTOCOL

2.1 Introduction

 The DSR is a simple and efficient routing protocol designed

specifically for use in multi-hop wireless ad hoc networks of mobile nodes.

Using DSR, the network is completely self-organized and self-configured,

requiring no existing network infrastructure or administration. Network

nodes cooperate to forward packets for each other to allow communication

over multiple “hops” between nodes not directly within wireless

transmission range of one another. As nodes in the network move about

or join or leave the network, and as wireless transmission conditions such

as sources of interference change, all routing is automatically determined

and maintained by the DSR routing protocol.

 Since the number or sequence of intermediate hops needed to

reach any destination may change at any time, the resulting network

topology may be quite rich and rapidly changing.

 The DSR protocol allows nodes to dynamically discover a

source route across multiple network hops to any destination in the ad hoc

network. Each data packet sent then carries in its header the complete,

ordered list of nodes through which the packet will pass, allowing packet

routing to be trivially loop-free and avoiding the need for up-to-date routing

 x ii

information in the intermediate nodes through which the packet is

forwarded.

 By including this source route in the header of each data packet, other

nodes forwarding or overhearing any of these packets can also easily

cache this routing information for future use.

The DSR protocol provides highly reactive service in order to help ensure

successful delivery of data packets in spite of node movement or other

changes in network conditions.

The DSR protocol is composed of two main mechanisms that work

together to allow the discovery and maintenance of source routes in the ad

hoc network:

2 Route Discovery is the mechanism by which a node S wishing to

send a packet to a destination node D obtains a source route to D.

Route Discovery is used only when S attempts to send a packet to

D and does not already know a route to D.

3 Route Maintenance is the mechanism by which node S is able to

detect, while using a source route to D, if the network topology has

changed such that it can no longer use its route to D because a link

along the route no longer works. When Route Maintenance

indicates a source route is broken, S can attempt to use any other

route it happens to know to D, or can invoke Route Discovery again

to find a new route for subsequent packets to D.

In DSR, Route Discovery and Route Maintenance each operate entirely

“on demand”. In particular, unlike other protocols, DSR requires no

periodic packets of any kind at any layer within the network.

 x iii

2.1.1 Basic Route Discovery

When some source node originates a new packet addressed to some

destination node, the source node places source route in the header

which gives the sequence of hops that the packet is to follow on its way to

the destination. Normally, the sender will obtain a suitable source route by

searching its “Route Cache” of routes previously learned; if no route is

found in its cache, it will initiate the Route Discovery protocol to

dynamically find a new route to this destination node.

To initiate the Route Discovery, node A (the initiator) transmits a “Route

Request” as a single local broadcast packet, which is received by

(approximately) all nodes currently within wireless transmission range of A.

Each Route Request identifies the initiator and target of the Route

Discovery, and also contains a unique request identification determined by

the initiator of the Request. Each Route Request also contains a record

listing the address of each intermediate node through which this particular

copy of the Route Request has been forwarded.

When another node receives this Route Request, if it is the target of the

Route Discovery, it returns a “Route Reply” to the initiator of the Route

Discovery, giving a copy of the accumulated route record from the Route

Request; when the initiator receives this Route Reply, it caches this route

in its Route Cache for use in sending subsequent packets to this

destination. Otherwise, if this node receiving the Route Request has

recently seen another Route Request message from this initiator bearing

 x iv

this same request identification and target address, or if this node’s own

address is already listed in the route record in the Route Request, this

node discards the Request. Otherwise, this node appends its own address

to the route record in the Route Request and propagates it by transmitting

it as a local broadcast packet (with the same request identification).

In returning the Route Reply to the initiator of the Route Discovery, the

intermediate node will typically examine its own Route Cache for a route

back to the initiator and if found, will use it for the source route for delivery

of the packet containing the Route Reply. Otherwise, it should perform its

own Route Discovery for target node A, but to avoid possible infinite

recursion of Route Discoveries, it must piggyback this Route Reply on the

packet containing its own Route Request for A. The intermediate node

could instead simply reverse the sequence of hops in the route record that

it is trying to send in the Route Reply, and use this as the source route on

the packet carrying the Route Reply itself.

When initiating a Route Discovery, the sending node saves a copy of the

original packet (that triggered the Discovery) in a local buffer called

the“Send Buffer”. The Send Buffer contains a copy of each packet that

cannot be transmitted by this node because it does not yet have a source

route to the packet’s destination. Each packet in the Send Buffer is

logically associated with the time that it was placed into the Send Buffer

and is discarded after residing in the Send Buffer for some timeout period.

If necessary for preventing the Send Buffer from overflowing, a FIFO or

other replacement strategy may also be used to evict packets even before

they expire. While a packet remains in the Send Buffer, the node should

occasionally initiate a new Route Discovery for the packet’s destination

address. However, the node must limit the rate at which such new Route

Discoveries for the same address are initiated, since it is possible that the

destination node is not currently reachable.

 xv

Illustration of route discovery :-

Source :1

Destination :10

Route request path: Refer figure 2.1.1.b

Route reply path: Refer figure 2.1.1.c

 xvi

 ROUTE REQUEST

 xvii

 ROUTE REPLY

 xviii

2.1.2 Route Maintenance

When originating or forwarding a packet using a source route, each

node transmitting the packet is responsible for confirming that data

can flow over the link from that node to the next hop.

 An acknowledgment can provide confirmation that a link is capable of

carrying data, and in wireless networks, acknowledgments are often

provided at no cost, either as an existing standard part of the MAC

protocol in use or as a software acknowledgement. When a software

acknowledgment is used, the acknowledgment request should be

retransmitted up to a maximum number of times. A retransmission of the

acknowledgment request can be sent as a separate packet, piggybacked

on a retransmission of the original data packet, or piggybacked on any

packet with the same next-hop destination that does not also contain a

software acknowledgment.

After the acknowledgment request has been retransmitted the maximum

number of times, if no acknowledgment has been received, then the

sender treats the link to this next-hop destination as currently “broken”. It

should remove this link from its Route Cache and should return a “Route

Error” to each node that has sent a packet routed over that link since an

acknowledgment was last received.

 x ix

2.2Additional Route Discovery Features :

2.2.1 Caching Overheard Routing Information

A node forwarding or otherwise overhearing any packet SHOULD add all

usable routing information from that packet to its own Route Cache.

2.2.2 Replying to Route Requests using Cached Routes

A node receiving a Route Request, for which it is not the target, searches

its own Route Cache for a route to the target of the Request. If found, the

node generally returns a Route Reply to the initiator itself rather than

forwarding the Route Request.

2.2.3. Preventing Route Reply storms

In order to reduce multiple route replies to be simultaneously transmitted

back to the source, if a node can put its network interface into

promiscuous receive mode, it MAY delay sending its own Route Reply for

a short period, while listening to see if the initiating node begins using a

shorter route first. Specifically,

This node MAY delay sending its own Route Reply for a random period

d = H * (h - 1 + r)

 xx

Where

h - the length in number of network hops for the route to be returned in this

node’s Route Reply.

r - a random floating point number between 0 and 1 .

H- a small constant delay (at least twice the maximum wireless link

propagation delay) to be introduced per hop.

2.3 Additional Route Maintenance features :

2.3.1. Packet salvaging

When an intermediate node finds the route to the destination to be broken,

instead of discarding the packet, it “ salvages “ it by sending it in an

alternate route that it retrieves from its route cache (if present).

2.3.2. Queuing packets destined for a broken link

2.3.3. Automatic route shortening

Source routes in use MAY be automatically shortened if one or more

Intermediate nodes in the route become no longer necessary.

 xx i

3. THE NETWORK SIMULATOR

GLOMOSIM

In an adhoc networks, communication among the nodes in established “

on the fly “ without using an existing infrastructure. Adhoc networking

supports transmission of data packets over multihop transmissions in a

network of mobile computing devices.

When protocols are designed for such an environment, it becomes very

difficult to evaluate them analytically due to certain factors like node

mobility, channel propagation characteristics and radio characteristics. So,

in this project we have used a network simulator called GloMoSim to

reduce the execution time for detailed simulation model of wireless

networks.

GloMoSim (Global Mobile Information system simulation library) is a library

based sequential and parallel simulator for wireless networks. The library

of GloMoSim has been built based on the parallel discrete-event

simulation capability provided by Parsec. GloMoSim has been built on the

basis of the layered approach provided by OSI. Standard APIs are used

between the simulation layers. Models of protocols at one layer interact

with the models in the other layers only by means of using these APIs.

The proposed protocol stack in GloMoSim will include models for the

channel, radio, MAC, network, transport and the application layer.

GloMoSim by itself provides a scalable simulation environment for wireless

networks.

 xx ii

In GloMoSim, each network node is initialized as a separate parsec entity.

These are considered to be separate logical processes in the system.

The memory requirement in such cases would increase very rapidly

as GloMoSim is a scalable simulation environment and as such one

can imagine the stack space required for thousands of nodes. To

solve this problem, a concept called Network Gridding is used. With this ,

a single entity can simulate several nodes in the system when it

contains a data structure, which contains sufficient information about

that node.

This is in short to say that we can increase the number of nodes in

the system while maintaining the same number of parsec entities.

In GloMoSim each entity represents a geographical area of the simulation.

Hence the network nodes which a particular entity represents are

determined by the physical position of the nodes.

3.1 Structure of GloMoSim

The layered approach in GloMoSim is built with the aim of rapidly

integrating models at each layer developed by different people. For

example, in this project, a multipath routing protocol for the network layer

has only been given. This makes the development process more focused

to a single layer and easier.

When each layer is represented by a single parsec entity, the memory

problems above stated seems to arise again. For this, the different layers

of GloMoSim are integrated into a single parsec entity. Each layer is

implemented by functions. The initialization function is called for each

 xx iii

node at the beginning of simulation. Functions are provided to send

messages between layers. when a layer receives a particular message,

appropriate functions to handle it are invoked and necessary instructions

are executed. At the end of simulation the finalize function is also called

for each of the nodes. This can be used by layers to collect the necessary

statistics.

3.2 Basic Structure of the source directory

The following figure depicts the structure of the directories that can be

found inside the GloMoSim folder.

/doc – contains the documentation

/scenarios- contains directories of various sample configuration topologies

/main - contains the basic framework design

/bin- for executable and input/output files

/include- contains common include files

/application- contains code for the application layer

 xx iv

/transport -contains the code for the transport layer

/network -contains the code for the network layer

/Mac -contains the code for the Mac layer

/radio- contains the code for the physical layer

The multipath routing protocol has been designed for the network layer.

3.3 Layers In GloMoSim

LAYERS

PROTOCOLS

Mobility

Random waypoint,Random

drunken,Trace based

Radio Propagation

Two ray and Free space

Radio Model

Noise Accumulating

Packet Reception Models

SNR bounded,BER based with

BPSK/QPSK modulation

Data Link (MAC)

CSMA,IEEE 802.11 and MACA

Network(Routing)

IP with AODV,Bellman-

Ford,DSR,Fisheye,LAR

scheme1,ODMRP,WRP

Transport

TCP and UDP

Application

CBR,FTTP,HTTP,TELNET

 xxv

Each and every layer in GloMoSim is represented by C structures in

implementation. For example the structure for the radio layer could be

represented by

typedef struct glomo_radio_str

{

RADIO_TYPE radioType;

/* general radio layer variable */

void * radioVar;

} Radiolayer;

Based on the radio type, different model specific structures are accessed

through ' radioVar '.

From the developer point of view of developing a new protocol for a

particular layer ,a .pc (parsec) file and the corresponding header file are

the ones to be written.

For the start of simulation, the input configuration file (config.in) is to be

written or rather defined properly. The details regarding the source,

destination, number of packets to be transmitted is all defined in a file

called app.conf (application.config). If the placement of the nodes is to be

decided by the user, a file called nodes.input comes in to picture and this

defines the node co ordinates in terms of the X, Y and the Z axes.

 xxvi

3.4 Details of the Input Files used

3.4.1 APPLICATION.CONFIG FILE

Application (config) file is used to generate the traffic for the simulation

(i.e.) to specify the number of packets, source, destination and the

duration of transmission.

The version of GloMoSim, which we are using now, provides the facility to

use the following traffic generators.

FTP,FTP/GENERIC,TELNET,CBR AND HTTP

FTP

FTP uses ‘tcplib’ to simulate the file transfer protocol. In order to use FTP,

the following format is needed:

FTP <src> <dest> <items to send> <start time>

where

<src> is the client node.

<dest> is the server node.

<items to send> is how many application layer items to send.

<start time> is when to start FTP during the simulation.

If <items to send> is set to 0, FTP will use tcplib to randomly determine

the amount of application layer items to send. The size of each item will

always be randomly determined by tcplib. Note that the term “item” in the

application layer is equivalent to the term “packet” at the network layer and

“frame” at the MAC layer.

 xxvii

e.g.:

a) FTP 0 1 10 0S

Node 0 sends node 1 ten items at the start of the simulation, with the size

of each item randomly determined by tcplib.

FTP/GENERIC

FTP/GENERIC does not use tcplib to simulate file transfer. Instead, the

client simply sends the data items to the server without the server sending

any control information back to the client. In order to use FTP/GENERIC,

the following format is needed:

FTP/GENERIC <src> <dest> <items to send> <item size> <start time>

<endtime>

where

<src> is the client node.

<dest> is the server node.

<items to send> is how many application layer items to send.

<item size> is size of each application layer item.

<start time> is when to start FTP/GENERIC during the simulation.

<end time> is when to terminate FTP/GENERIC during the simulation.

If <items to send> is set to 0, FTP/GENERIC will run until the specified

<end time> or until the end of the simulation, which ever comes first.

If <end time> is set to 0, FTP/GENERIC will run until all <items to send> is

transmitted or until the end of simulation, which ever comes first.

 xxviii

If <items to send> and <end time> are both greater than 0,

FTP/GENERIC

will run until either <items to send> is done, <end time> is reached, or the

simulation ends, which ever comes first.

Eg :FTP/GENERIC 0 1 10 1460 0S 600S

Node 0 sends node 1 ten items of 1460B each at the start of the

simulation up to 600 seconds into the simulation. If the ten items are sent

before 600 seconds elapsed, no other items are sent.

TELNET

TELNET uses tcplib to simulate the telnet protocol. In order to use

TELNET, the following format is needed

TELNET <src> dest> <session duration> <start time>

where

<src> is the client node.

<dest> is the server node.

<session duration> is how long the telnet session will last.

<start time> is when to start TELNET during the simulation.

If <session duration> is set to 0, FTP will use tcplib to randomly determine

how long the telnet session will last. The interval between telnet items is

determined by tcplib.

e.g.:TELNET 0 1 100S 0S

Node 0 sends node 1 telnet traffic for a duration of 100 seconds at the

start of the simulation.

 xx ix

CBR

CBR simulates a constant bit rate generator. In order to use CBR, the

following format is needed:

CBR <src> <dest> <items to send> <item size>

<interval> <start time> <end time>

where

<src> is the client node.

<dest> is the server node.

<items to send> is how many application layer items to send.

<item size> is size of each application layer item.

<interval> is the interdeparture time between the application layer items.

<start time> is when to start CBR during the simulation.

<end time> is when to terminate CBR during the simulation.

If <items to send> is set to 0, CBR will run until the specified <end time> or

until the end of the simulation, which ever comes first. If <end time> is set

to 0, CBR will run until all <items to send> is transmitted or until the end of

simulation, which ever comes first.

If <items to send> and <end time> are both greater than 0, CBR will

will run until either <items to send> is done, <end time> is reached, or the

simulation ends, which ever comes first.

e.g.: CBR 0 1 10 1460 1S 0S 600S

Node 0 sends node 1 ten items of 1460B each at the start of the

simulation up to 600 seconds into the simulation. The interdeparture time

for each item is 1 second. If the ten items are sent before 600 seconds

elapsed, no other items are sent.

 xxx

HTTP

HTTP simulates single-TCP connection web servers and clients. Bruce

following format describes its use for servers:

HTTP <address>

where

<address> is the node address of a node, which will be serving Web

pages.

For HTTP clients, the following format is used:

HTTP <address> <num_of_server> <server_1> ... <server_n> <start>

<thresh>

where

<address> --- node address of the node on which this client resides

<num_of_server> --- number of server addresses which will follow

<server_1>…<server_n> --- node addresses of the servers which this

client will choose between when requesting pages.

<start> is the start time for when the client will begin requesting pages

<thresh> is a ceiling (specified in units of time) on the amount of “think

time” that will be allowed for a client.

e.g.:

HTTPD 2

HTTP 1 3 2 5 11 10S 120S

There are HTTP servers on nodes 2, 5, 8, and 11. There is an HTTP

client on node 1. This client chooses between servers {2, 5, and 11} only

when requesting web pages. It begins browsing after 10S of simulation

time have passed.

 xxx i

3.4.2 CONFIG.IN FILE

During the simulation takes the input from the file called config.in, which

specifies various parameters to be used.

The details that can be obtained from this input files are as follows.

1. simulation time

2. a random number seed used to initialize part of the seed of various

randomly generated numbers in the simulation. This can be used to

vary the seed of the simulation to see the consistency of the results

of the simulation.

3.parameters stand for the physical terrain in which the nodes

are being simulated. For example, the following represents an area

of size 100meters by 100 meters. All range parameters are in terms

of meters.

4. the number of nodes being simulated.

5. parameter representing the node placement strategy.

RANDOM: Nodes are placed randomly within the physical terrain.

UNIFORM: Based on the number of nodes in the simulation,the physical

terrain is divided into a number of cells. Within each cell, a node is

placed randomly.

GRID: Node placement starts at (0, 0) and are placed in grid format with

each node GRID-UNIT away from its neighbors .The number of

nodes has to be square of an Integer.

FILE: Position of nodes is read from NODE-PLACEMENT-FILE. On each

line of the file, the x and y position of a single node is separated by a

space.

6.Parameters for mobility.

 xxx ii

If MOBILITY is set to NO, than there is no movement of nodes in the

model. RANDOM-DRUNKEN model, if a node is currently at position

(x, y), it can possibly move to (x-1, y),(x+1, y), (x, y-1), and (x, y+1); as

long as the new position is within the physical terrain.

RANDOM WAYPOINT, a node randomly selects a destination from the

physical terrain. It moves in the direction of the destination in a

speed uniformly chosen between MOBILITY-WP-MIN-SPEED and

MOBILITY-WP-MAX-SPEED (meter/sec). After it reaches its

destination, the node stays there for MOBILITY-WP-PAUSE time

period.

The MOBILITY-INTERVAL is used in some models that a node updates

its position every MOBILITY-INTERVAL time period. The MOBILITY-D-

UPDATE is used that a node updates its position based on the

distance(in meters).

7. propagation-limit:

Signals with powers below PROPAGATION-LIMIT (in dB) are not

delivered. This value must be smaller than RADIO-RX-SENSITIVITY +

RADIO-ANTENNA-GAIN of any node in the model. Otherwise, simulation

results may be incorrect. Lower value should make the simulation more

precise, but it also make the execution time longer.

8 . propagation-pathloss: pathloss model

FREE-SPACE: Friss free space model.

(path loss exponent, sigma) = (2.0, 0.0)

TWO-RAY:. It uses free space path loss(2.0, 0.0) for near sight and

plane earth path loss (4.0, 0.0) for far sight.

9. NOISE-FIGURE: noise figure

 xxx iii

10.TEMPARATURE of the environment

11. RADIO-TYPE:

It represents the radio model to transmit and receive packets. it may

be one of the following

RADIO-ACCNOISE: standard radio model

RADIO-NONOISE: abstract radio model

12.RADIO-FREQUENCY: frequency (in hertz)

13.RADIO-BANDWIDTH: bandwidth (in bits per second)

14. RADIO-RX-TYPE: packet reception model

15. RADIO-TX-POWER: radio transmission power (in dBm)

16. RADIO-ANTENNA-GAIN: antenna gain (in dB)

17. RADIO-RX-SENSITIVITY: sensitivity of the radio (in dBm)

18. RADIO-RX-THRESHOLD: Minimum power for received packet (in

dBm)

19. protocol to be used in MAC layer

20. parameter to enable (Or) disable the PROMISCOUS mode

21. protocol to be used in NETWORK layer

22. ROUTING-PROTOCOL to be used

23. input file to setup applications such as FTP and Telnet.

The file will need to contain parameters that will be use to determine

connections and other characteristics of the particular application.

24. Parameters specifying which layer’s statistics to be collected.

 xxx iv

4. THE PARSEC PROGRAMMING ENVIRONMENT

The PARSEC compiler, called pcc, accepts all the options supported by

the C compiler, and also supports separate compilation. C programs (files

with .csuffix) and object files (files with .o suffix) can also be compiled and

linked with PARSEC programs. PARSEC programs are usually given a .pc

extension.

4.1 Options

PARSEC compiler also supports the following options:

-sync Specify one of the synchronization algorithms:

-mpc Message-passing C: ignores message timestamps

cons Conservative

opt Optimistic (not implemented yet)

-c Generate ".o" and ".pi" files.

-E Generate ".c" and ".pi" files.

-P Inhibit line number translation. (Normally, the PARSEC

compiler inserts line numbers into the intermediate C file

so that compiler and runtime errors report the correct line in the PARSEC

file.)

-env Show environment names set for pcc.

 -pcc_cc_options û use these options for compiling.

-pcc_linker_options û use these options for linking.

-ini Save the auto-generated initialization file.

-ff Enable compilation of friend functions.

 -clock Set the default representation for clocktype.

 xxxv

The following examples illustrate how to compile PARSEC programs on a

sequential architecture.

% pcc -o example example.pc

This generates an executable file example in the current working directory.

4.2 Separate Compilation

PARSEC supports separate compilation of entities. Entities defined in one

file and used in a second file must be declared extern in the second file.

4.3 Common PARSEC Runtime Errors

 Runtime errors/warnings are detected by PARSEC and

appropriate messages are sent to stderr. The most common errors are

related to stack allocation. PARSEC adds a finalize block at the end of the

entity body

" Run out of memory for a mes sage." Memory has been exhaus ted, pos s ibly

due

to a deadlock, an infinite loop, or an imbalance in mes sage proces s ing.

" Er ror : T rying to s end mess ages to remote entity." A sequential program is

attempting to send a mes s age to a remote proces s or , probably indicating that

an ename var iable is uninitialized or has become cor rupted.

" Er ror : T rying to receive mes s ages from remote entity." S ame as above, but

les s common.

 xxxvi

" T hread Local S torage Key Create Er ror ." Er ror in creating Windows NT

threads .

" Fail to create NT thread." Ditto.

" * * * PARS EC er ror . Failed in à" Pthread s etup er ror .

" * * * PARS EC er ror . Failed to create threads ." Pthread setup er ror .

" T oo many different types of mes s ages . Recompile the runtime to suppor t

more

mes sage types ." By default, the maximum number of mes s age types the

Parsec

sys tem can suppor t is 64. T he number can be increased, but it has a

detr imental impact on per formance.

" Run out of memory in s etting entity parameters ." Apparently, the

parameters

for this entity are HUGE.

" Wrong NEW_ ENT I T Y_ACK." An er ror in creating a new entity has occur red.

" Unrecognized Remote Mes sage." S omehow the mes sage has become

cor rupted,

pos s ibly due to memory mismanagement in the program.

 xxxvii

5.2 MODULE WISE ALGORITHMS

5.2.1 MODULE 1 (EXTRACTION OF DISJOINT PATHS)

5.2.1.1 Extraction of disjoint paths

Route Discovery phase

1. when any node wants to send a message to a destination, it

originates a RREQ packet . This is broadcast locally.

2.The algorithm for handling RREQ is as below

If RREQ has been received already

discard

Else

{

if the node’s address is already in the route record
discard
else

{

if RREQ’s destination address is same as the node’s address ,

send RREP packet

else

{

if there is any route from this node to the destination

send RREP packet
else
{

append this nodes address to the RREQ,broadcast
store RREQ packet’s id in the seen table.

}

}

 xxxviii

}

}

5.2.1.2 Methodology to find node disjoint path

1.Use a “ deleted “ bit in each route cache entry to indicate whether

the path is feasible i.e. it is one of the node disjoint multiple

paths

2.whenever an entry is deleted from the route cache table

all the entry’s deleted bit is reset and the variable FIRST (to

indicate t hat the node disjoint path discovery must be

performed again) is set.

5.2.1.3 Specific algorithm

function “ getroute “---to return the route from the cache table

If the value of the variable FIRST = 1

1. Store the primary path in the temporary array of disjoint paths

2. For all the paths in the route cache table

if the path is disjoint with paths already stored in the

temporary array of disjoint paths

Add the disjoint path in to the array

else

set “deleted bit” of that route cache entry

 xxx ix

5.2.2 Module 2(LOAD DISTRIBUTION)

Calculation of load distribution:

In GloMoSim the links between the nodes is assumed to have

uniform bandwidth. But to simulate a real time constraint , we have

randomly assigned the bandwidth between the various links non-uniformly.

For the maximum utilization of bandwidth we calculate the number of

packets to be transmitted in each path as below.

1.Find minimum reserve bandwidth (mrbw) for all the disjoint paths

discovered so far.

mrbw[i]= min(R kl / k,l E path i)

where

Rkl- bandwidth between the kth and the lth node in the path i

2. Find the number of packets to be transmitted in each path as

nop[i] = (bwth[i] / sumofbw) * totalnop

where

nop[i] - number of packets to be transmitted in the ith node disjoint

path mrbw[i] - minimum reserve bandwidth of the ith node disjoint

path. sumofbw - sum of minimum bandwidth of all node disjoint

paths.

totalnop - total number of packets to be transmitted from the source to the

destination.

 x l

5.2.3 MODULE 3 (PERFORMANCE ANALYSIS)

The third module is concerned with the analysis of performance of our

multipath routing protocol with the DSR protocol that has been already

inbuilt in GloMoSim.This is just a comparative study to prove how efficient

this multipath routing protocol is.

For the purpose of analysis, several simulation runs were made,first on our

multipath routing protocol.During these runs, the statistics that were

studied is as below

1.Number of packets

2.Energy in the intermediate nodes after transmitting the number of

packets.

Then the DSR simulation was run on the basis of same inputs and the

above said statistics were observed .Several runs were made for different

number of packets and the conclusions derived on their basis are as under

1. The intermediate nodes in the multipath routing protocol have more

residual energy after transmitting the specified number of packets than

the ones in the DSR.

2. The mean time to node failure is increased significantly.

3. Bandwidth of the entire network is used in an efficient manner.

4. The number of routes lying idle at any point of time is minimal when

compared to normal DSR.

 x li

The above said benefits are illustrated by the graph shown in figure

3.2.5.a.It can be seen that the nodes stand out much longer in terms

of energy.

 x lii

6 IMPLEMENTATION DETAILS

6.1 Simulation Procedure in GloMoSim

First , we need to specify the necessary input parameters in the

Config.in file as said above.. For our simulation procedure, we have been

specific about certain parameters as mentioned below to enable hassle

free simulation

Terrain range – (2000,2000)

Number of nodes – 49 (This is a scalable simulator. Hence number of

nodes can be increased at will.

Routing protocol – DSR

These parameters were adhered to for the whole process of

experimentation with the new protocol .

A copy of the config.in file used for the simulation is given below for

reference.

CONFIG.IN

SIMULATION-TIME 15M
SEED 1

TERRAIN-DIMENSIONS (2000, 2000)

 x lii i

NODE-PLACEMENT UNIFORM
MOBILITY NONE

MOBILITY-POSITION-GRANULARITY 0.5

PROPAGATION-LIMIT -111.0

PROPAGATION-PATHLOSS TWO-RAY

NOISE-FIGURE 10.0

TEMPARATURE 290.0

RADIO-TYPE RADIO-ACCNOISE

RADIO-BANDWIDTH 2000000

RADIO-RX-TYPE SNR-BOUNDED

RADIO-RX-SNR-THRESHOLD 10.0

RADIO-TX-POWER 15.0

RADIO-ANTENNA-GAIN 0.0

RADIO-RX-SENSITIVITY -91.0

RADIO-RX-THRESHOLD -81.0

MAC-PROTOCOL 802.11

NETWORK-PROTOCOL IP

NETWORK-OUTPUT-QUEUE-SIZE-PER-PRIORITY 100

ROUTING-PROTOCOL DSR

APP-CONFIG-FILE ./app.conf

APPLICATION-STATISTICS YES

TCP-STATISTICS YES

UDP-STATISTICS YES

ROUTING-STATISTICS YES

NETWORK-LAYER-STATISTICS YES

MAC-LAYER-STATISTICS YES

RADIO-LAYER-STATISTICS YES

CHANNEL-LAYER-STATISTICS YES

MOBILITY-STATISTICS YES

GUI-OPTION YES

GUI-RADIO YES

 x liv

GUI-ROUTING YES

After specifying the configuration parameters, we need to define the

source , destination and other details in the application.config file. We

have used the CBR (constant bit rate) traffic generator. The other traffic

generators could be used as well.

Strings specified during the process of testing individually are given below

CBR 10 2 10 512 15S 0S 110S

CBR 7 0 35 512 50S 0S 100S

CBR 17 11 40 512 25S 0S 0S

CBR 14 10 20 512 20S 0S 0S

CBR 34 48 10 512 45 0S 75S

CBR 16 30 73 512 20 0S 25S

CBR 12 6 50 512 33S 0S 0S

TELNET 16 30 10S 150S

After specifying these two input files , if we mention that the node

placement should be according to a placement file, then we need to

mention the co ordinates in a separate file called nodes.input.

A sample of how that file would look like is given below

NODE-PLACEMENT-FILE

Format: nodeAddr 0 (x, y, z)

The second parameter is for the consistency with the mobility trace

format.

0 0 (20.2, 0.9, 0.11)

1 0 (20.3, 30.8, 0.01)

 x lv

2 0 (20.4, 60.7, 0.12)

3 0 (20.5, 90.6, 0.05)

4 0 (50.6, 0.5, 0.09)

5 0 (50.7, 30.4, 0.10)

6 0 (50.8, 60.3, 0.12)

7 0 (50.9, 90.2, 0.21)

8 0 (80.1, 0.1, 0.30)

9 0 (80.2, 30.0, 0.16)

The list of commands to be specified in the appropriate locations is

given below

E:\GloMoSim\main\makent

- This is a batch file (makent.bat). This contains appropriate calls to the

parsec compiler. This results in creation of the GloMoSim.exe file

which is to be used for simulation

E:\GloMoSim\bin\GloMoSim config.in

- This is to start the process of simulation. The exe file takes in input

from the config.in file.

- When the above command is executed, the process of simulation

starts and the screen shot is as shown in figure 3.4.1.a

The appearance on the screen shows a series of numbers which denote

the current simulation time , the node involved in the message switch and

other details.

This indicates the end of the simulation run. GloMoSim internally writes the

statistics required (as specified in the finalize function of the protocol.pc

file)

 x lvi

The statistics file generated in one of our simulation runs is enclosed

6.2 General statistics format

Node: 0, Layer: RadioAccnoise, Signals transmitted: 1

Node: 0, Layer: RadioAccnoise, Signals arrived with power above RX

Sensitivity: 7

Node: 0, Layer: RadioAccnoise, Signals arrived with power above RX

threshold: 2

Node: 0, Layer: RadioAccnoise, Signals received and forwarded to MAC:

2

Node: 0, Layer: RadioAccnoise, Collisions: 0

Node: 0, Layer: RadioAccnoise, Energy consumption (in mWhr):

225.000

Node: 0, Layer: 802.11, pkts from network: 0

Node: 0, Layer: 802.11, UCAST (non-frag) pkts sent to chanl: 0

Node: 0, Layer: 802.11, BCAST pkts sent to chanl: 1

Node: 0, Layer: 802.11, UCAST pkts rcvd clearly: 0

Node: 0, Layer: 802.11, BCAST pkts rcvd clearly: 2

Node: 0, Layer: 802.11, retx pkts due to CTS timeout: 0

Node: 0, Layer: 802.11, retx pkts due to ACK timeout: 0

Node: 0, Layer: 802.11, pkt drops due to retx limit: 0

Node: 0, Layer: 802.11, RTS Packets ignored due to Busy Channel

0

Node: 0, Layer: 802.11, RTS Packets ignored due to NAV 0

Node: 0, Layer: RoutingMpr, Number of Requests Txed = 1

Node: 0, Layer: RoutingMpr, Number of Replies Txed = 0

 x lvii

Node: 0, Layer: RoutingMpr, Number of Errors Txed = 0

Node:0, Layer: RoutingMpr, Number of CTRL Packets Txed = 1

Node: 0, Layer: RoutingMpr, Number of Routes Selected = 0

Node: 0, Layer: RoutingMpr, Number of Hop Counts = 0

Node: 0, Layer: RoutingMpr, Number of Data Txed = 0

Node: 0, Layer: RoutingMpr, Number of Data Originated = 0

Node: 0, Layer: RoutingMpr, Number of Data Received = 0

Node: 0, Layer: RoutingMpr, Number of Link Breaks = 0

Node: 0, Layer: RoutingMpr, Number of Salvaged Packets = 0

Node: 0, Layer: RoutingMpr, Number of Dropped Packets = 0

Node: 0, Layer: NetworkIp, Number of Packet Attempted to be Sent to

MAC: 1

Node: 0, Layer: NetworkIp, Number of Packets Routed For Another

Node: 0

Node: 0, Layer: NetworkIp, Number of Packets Delivered To this Node:

0

Node: 0, Layer: NetworkIp, Total of the TTL's of Delivered Packets: 0

Node:0, Layer: NetworkIp, Number Fragments dropped because

Node was Unreachable: 0

Node: 0, Layer: NetworkIp, Number Fragments dropped because TTL

expired: 0

Node:0, Layer: TransportUdp, Number of pkts from application 0.

Node:0, Layer: TransportUdp, Number of pkts to application 0.

Our simulation involved analysis of the statistics for the nodes numbered

16,23 , 30 in our protocol. We did a study on the energy spent in these

nodes for the evaluation of performance of our protocol.

GUI options

 x lvii i

It is possible to view the simulation in the GUI which is a front end inbuilt

facility based on java

For this , the configuration file needs to be converted in to a trace file .

This requires the execution of the command

E:\GloMoSim\bin\GloMoSim config.in>a.trace

Where a.trace is the name of the trace file.

The trace file needs to be copied in to the java_gui folder.

And the following command is to be run

E:\GloMoSim\java_gui\javac Glomomain.java

- this is java compilation of the source code for the front end facility.

E:\GloMoSim\java_gui\java Glomomain

This will display the java interface where in the nodes and the

communication between them can be seen on the screen .

An illustration is given in the figure.

 x lix

 AFTER PLAYBACK

 l

 STATISTICS VIEW

 l i

 FUTURE ENHANCEMENTS

1. To make this multipath routing protocol work for multiple sources and

multiple destinations

2. An enhancement in the protocol to handle a type of a situation

described below :

Till now, we have chosen only completely node disjoint paths.

There may be network conditions wherein there exists many node disjoint

multiple paths to the intermediate node only .In such cases this node will

act a limiting node inspite of the fact that multiple paths exist halfway.

The solution lies in transmission of packets in multiple paths till the

intermediate node, buffering it there and then transmitting it sequentially to

the destination.

 l ii

 REFERENCES

1. “Adhoc Networks “ By Charles.E.Perkins.

 2.. “draft-ietf-manet-dsr-07.txt” released by Internet Engineering

Task

 Force (MANET GROUP).

 3. Paper on “ On-Demand Multipath Routing for Mobile Ad Hoc

Networks”

 Kui Wu and Janelle Harms .

4. Paper on “ Load Balancing of Multipath Source Routing in Adhoc

 Networks “ by Liang Fang Zang , Zhegua Zao.

 l ii i

 CONCLUSION

So far, we have attempted to design an efficient multipath routing protocol

for an adhoc network. We concentrated on the constraints that arise in

data transfer and used the multipaths accordingly.

This is just a beginning of how good an existing protocol could be modified

to suit the network needs. Additional works that can be made in this regard

are presented in the future enhancement section.

Thus, in this project, we have designed a multipath routing protocol, which

could be added to GloMoSim as an inbuilt code to facilitate further

research in the area of adhoc networks.

.

 l iv

