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A Visual Demonstration of the 
Fundamental Theorem of Calculus 

Menachem Lazar 
 

This short paper presents an original, simple demonstration of the Fundamental 

Theorem of Calculus.  This theorem asserts that finding slopes of tangent lines (i.e. 

differentiation) and finding areas under curves (i.e. integration) are inverse operations 

save a constant.  Can we prove this?  Yes.  Most textbooks, in fact, present an elegant, 

simple proof for this theorem.  However, the standard proofs usually omit references to 

curves, slopes, and areas--a weakness that can make the proof unnecessarily abstract and 

difficult to understand. 

In the next few pages we demonstrate visually the inverse relationship between 

differentiation and integration; we will see that finding areas under a curve is really the 

“opposite” of finding slopes of tangent-lines.  Before beginning, I assume that the reader 

is familiar with Riemann’s Sums and thus the correspondence between the function 
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For our demonstration, we will need some 

arbitrary function.  For this, we will use the function 

f(x) = x2.  To the right is a graph of that function: 

 

 

Figure 1.   f(x) 
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If we so wanted, we could construct a graph of the slope of every line tangent to 

f(x) at x.  Looking at the above graph we see that a line tangent to f(x) at x = 0.2 would 

have a slope of 0.4; a line tangent at x = 0.6 would have a slope of 1.2; and a line tangent 

at x = 1 would have a slope of 2.  Plotting these and similar points we would end up 

drawing a graph that looks like this: 

 

 

 

 

 
This graph is actually the plot of the function f’(x) = 2x, or what we usually call the 

derivative of f(x).  So far we’ve discussed differentiation; let’s move on to integration. 

Imagine we wanted to reverse the above procedure.  Imagine we are given an 

arbitrary function g(x) and asked to draw the graph of another function G(x) with the 

following condition: the slope of every line tangent to G(x) at some x is determined by 

g(x).  How would we go about constructing G(x)? 

Let’s use a simple example.  We begin with the function g(x) = 2x.  We would 

like to draw the graph of another function G(x) whose tangent-line slopes are determined 

by g(x).  For instance, the line tangent to G(x) at x = 0.1 should have the slope g(0.1), or 

0.2; the line tangent to G(x) at x = 0.3 should have the slope g(0.3), or 0.6; and so on.  

Figure 2.   f’(x) 
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While we don’t know yet what the graph of the function G(x) looks like, we can already 

draw a few of its tangent lines: 

 

 

 

 

 

 

 

Remember, we are not yet drawing G(x).  All we are plotting are some of its tangent 

lines, albeit vertically displaced.  From the above graph you can see how the segment of 

G(x) that passes through x = 0.1 has a slope of g(0.1), or 0.2; the segment that passes 

through x = 0.3 will have a slope of 0.6; and so on.  We’re on the right track!   

However, the segments above clearly do not compose the function G(x) we are 

trying so hard to construct.  First, the segments do not compose a continuous function.  

Second, most of the graph provides us with inaccurate information.  For example, from 

looking at the above graph, you would think that the slope of line tangent to G(x) at x = 

0.35 is 0.6; however, the correct slope should really be g(0.35), or 0.7.   

Figure 3.   The Infancy of G(x) 
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To solve both problems, we will need to 1) join the segments together and 2) 

make the segments significantly smaller.  Let’s solve the first problem first.  Easily 

enough we have, in the graph below, connected the segments:  

 

 

 

 

 

 

 

 
Before we move on to solving the second problem, let us calculate the function 

for the graph we have above.  Let’s say we wanted to determine the y-value for a given x 

on the above graph, what would we do?  For example, imagine we wanted to know what 

the y-value was at x = 0.6.  The easiest way to do this is probably to add up the heights of 

the three segments that lie between 0 and 0.6.  To do that, we need to figure out the 

heights of each segment. 

Figure 4.   The Adolescence of G(x) 
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We all know from elementary school that 
run

rise
slope = .  Since we know the run 

of each segment, in our case it is 0.2, and we also know the slope, given by g(x), we can 

easily solve for the run, or height, of each segment.  In our case, the y-value at x = 0.6 

would be h1 + h2 + h3, where hx is the height of segment x.  Each hx in turn is  ∆x * m, 

where ∆x is the segment length, or the run, and m is the slope.  That would translate into 

0.2*0.2 + 0.2*0.6 + 0.2*1.0, or a final answer of 0.36.  Looking at the graph on the 

previous page, the reader will see that the y-value at x = 0.6 is indeed 0.36.  If we wanted 

to rewrite the above calculations in a more mathematical notation we could write: 
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where n is the number of segments, ∆x is the segment length (in our case 0.2), and xk is 

the x-value for each segment k (in our example the xk values were 0.1, 0.3, and 0.5). 

Now, to complete the demonstration, we will attend to the second problem raised 

earlier.  We noted that the segments were just too large; the slopes of the lines tangent to 

G(x) at points other than the segment midpoints did not equal g(x).  The y-values at points 

like 0.37 and 0.81 were incorrectly given as 0.6 and 1.8, when they should in fact have 

been 0.74 and 1.62.  Thankfully, since we already have (1), resolving this problem is 

trivial.  All we need to do is make the segment length ∆x very, very small.  That way, 

we’ll be able to obtain the correct y-value for any given x.  To do this, we’ll just rewrite 

the above equation adding a limit that tells the reader that we want ∆x to be as close to 

zero as possible: 
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Now the equation is a perfect tool to draw any function G(x) whose derivative is the 

given g(x).  We managed to do derivation “backwards!” 

Graphing our latest version of the function, we get 

 

 

 

 

 

At this point I hope that the above function rings a bell.  Aside from being the 

function that describes derivation “backwards,” it is also the one that describes 

integration “forwards.”  In fact, it is the same equation that you’ll reach when using 

Riemann’s Sums to find the area under a curve!  

Thus, in a brief few pages we have shown that the method for finding slopes of 

tangent lines is the “opposite” of the method for finding areas under a curve--and so we 

have the Fundamental Theorem of Calculus! 

Figure 5.   A Fully Developed G(x) 


