A hydraulic ram installation consists of a supply, a drive pipe, the ram, a supply line and usually a storage tank. These are shown in Figure 1. Each of these component parts is discussed below:
Supply. The intake must be designed to keep trash and sand out of the supply since these can plug up the ram. If the water is not naturally free of these materials, the intake should be screened or a settling basin provided. When the source is remote from the ram site, the supply line can be designed to conduct the water to a drive pipe as shown in Figure 2. The supply line, if needed, should be at least one pipe diameter larger than the drive pipe.
Drive pipe. The drive pipe must be made of a non-flexible material for maximum efficiency. This is usually galvanized iron pipe, although other materials cased in concrete will work. In order to reduce head loss due to friction, the length of the pipe divided by the diameter of the pipe should be within the range of 150-1,000. Table 2 shows the minimum and maximum pipe lengths for various pipe sizes.
Drive Pipe Size (mm) | Length (meters) | |
Minimum | Maximum | |
13 | 2 | 13 |
20 | 3 | 20 |
25 | 4 | 25 |
30 | 4.5 | 30 |
40 | 6 | 40 |
50 | 7.5 | 50 |
80 | 12 | 80 |
100 | 15 | 100 |
The
drive pipe diameter is usually chosen based on the size of the ram and the
manufacturer's recommendations as shown in Table 3. The length is four to
six times the vertical fall.
Hydram Size | 1 | 2 | 3 | 3.5 | 4 | 5 | 6 |
Pipe Size (mm) | 32 | 38 | 51 | 63.5 | 76 | 101 | 127 |
In
installing the ram, it is important that it be level, securely attached to
an immovable base, preferably concrete, and that the waste-water be drained
away. The pump can-not operate when submerged. Since the ram usually operates
on a 24-hour basis the size can be determined for delivery over a 24-hour period.
Table 4 shows hydraulic ram capacities for one manufacturer's Hydrams.
Size of Hydram | |||||||||
1 | 2 | 3 | 3.5 | 4 | 5X | 6X | 5Y | 6Y | |
Volume of Drive Water Needed (liters/min) | 7-16 | 12-25 | 27-55 | 45-96 | 68-137 | 136-270 | 180-410 | 136-270 | 180-410 |
Maximum Lift (m) | 150 | 150 | 120 | 120 | 120 | 105 | 105 | 105 |
Delivery Pipe. The delivery pipe can be of any material that can withstand the water pressure. The size of the line can be estimated using Table 5.
Delivery Pipe Size (mm) | Flow (liters/min) |
30 | 6-36 |
40 | 37-60 |
50 | 61-90 |
80 | 91-234 |
100 | 235-360 |
Storage Tank. This is located at a level to provide water to the point of use. The size is based on the maximum demand per day.
Sizing a Hydraulic Ram
A small community consists of 10 homes with a total of 60 people. There is a spring l0m lower than the village which drains to a wash which is 15m below the spring. The spring produces 30,000 liters of water per day. There is a location for a ram on the bank of the wash. This site is 5m higher than the wash and 35m from the spring. A public standpost is planned for the village 200m from the ram site. The lift required to the top of the storage tank is 23m. The following are the steps in design.
Identify the necessary design factors:
1. Vertical fall is 10m.
2. Lift is 23m to top of storage tank.
3. Quantity of flow available equals 30,000 liters per day divided by 11,440 minutes per day (30,000/11,440) = 20.8 liters per minute.
4.
The quantity of water required assuming 40 liters per day per person as maximum
use is 60 people x 40 liters per day = 2,400 liters per day.
2,400/1,440
= 1.66 liters per minute (use 2 liters per minute)
5. The length of the drive pipe is 35m.
6. The length of the delivery pipe is 200m.
The above data can be used to size the system. Using Table 1, for a fall of 10m and a lift of 80m, 117 liters can be pumped a day for each liter per minute supplied. Since 2,400 liters per day is required, the number of liters per minute needed can be found by dividing 2,400 by 117:
2,400/117 = 20.5 liters per minute supply required.
From item 3 above, the supply available is 20.8 liters per minute so the source is sufficient.
Table 3 can now be used to select a ram size. The volume of driving water or supply needed is 20.5 liters per minute. From Table 4, a No. 2 Hydram requires from 12 to 25 liters per minute. A No. 2 Hydram can lift water to a maximum height of 250m according to Table 4. This will be adequate since the lift to the top of the storage tank is 23m. Thus, a No. 2 Hydram would be selected.
Table 3 shows that for a No. 2 Hydram, the minimum drive pipe diameter is 38mm. Table 2 indicates that the minimum and maximum length for a 40mm pipe (the closest size to 38mm) is 6m-40m. Since the spring is 35m away, the length is all right. Table 5 can be used to select a delivery pipe 30mm in diameter which fits the supply needed, 20.5 liters per minute.
This document is not copyrighted, so you are free to print and distribute it. However, we do request that any such re-distribution be on a non-commercial basis only. Kindly reference US AID, 1982 as the author and this Lifewater web site, http://www.lifewater.org, as the source. Lifewater can also mail a photocopy of the original Technical Note to you for a small donation to cover our expenses.