Site hosted by Angelfire.com: Build your free website today!

The International School of Panama

General Chemistry Notes: Chapter 5 – Part II

Electron Configuration

 

Before we go on, answer questions 13 to 17 on page 134

 

The electron configuration is the arrangement of the elements in an atom.

The ground state electron configuration is the most stable, lowest-energy arrangement of the electrons in atoms of each element.

The aufbau principle states that electrons occupy the lowest energy orbital available.

 

http://www.iun.edu/~cpanhd/C101webnotes/modern-atomic-theory/aufbau-principle.html

Remember the following points:

·        As the principal energy level increases the energy increases too.

Example: 3p orbitals have higher energy than 2p  orbitals.

·        The same types of orbitals in the same level of energy have the same energy.

Example: all 2p orbitals have the same energy.

·        Different types of orbitals in the same energy level have different energy and are known as sublevels

Example: 2p orbitals have higher energy than 2s orbitals

·        The sequence of energy sublevels within a principal energy level is s, p, d, and f

·        Some sublevels of  a principal level can overlap with sublevels of another principal level.

Example: 3d orbitals are more energetic than 4s orbitals.

 

Remember also the amount of orbitals and of each type per level:

Subshell Type

Number of Orbitals

Maximum Number of Electrons

s

1

2

p

3

6

d

5

10

f

7

14

 

The Pauli exclusion principle states that a maximum of 2e- may occupy a single atomic orbital but only if they have opposite spins.

 

The periodic table is divided into s, p, d and f blocks-

 

http://library.tedankara.k12.tr/chemistry/vol3/Ground-state%20electron%20configurations/z58.htm

 

Diagram    The s block starts by level 1 of energy

Diagram    The p block starts by level 2 of energy

Diagram    The d block starts by level 3 of energy

Diagram    The f block starts by level 4 of energy

Diagram

Diagram

Diagram

Diagram

Writing the electron configuration

 

Notation:

       

 

First method- using only the periodic table

 

1.  Find the element in the PT

1.    Start filling the orbitals, starting by 1s (Hydrogen position) following the order of increasing atomic number until the position of the element you are doing. The periodic table tells you the level, block and amount of electrons as you move following the order of increasing atomic number. The table also tells you the level and block of the last electron in the given atom.

 

Element   Electron Configuration     

H (Z = 1):           1s1

 

The coefficient is the level of energy

The letter s is the type of orbital

The superscript is the amount of electrons in the  orbital. (Remember that the maximum number of electrons per orbital is two)

Element   Electron Configuration   Element   Electron Configuration                          


He (Z = 2): 1s2          

Li (Z = 3): 1s2 2s1

Be (Z = 4): 1s2 2s2

B (Z = 5): 1s2 2s2 2p1      

C (Z = 6): 1s2 2s2 2p2

N (Z = 7): 1s2 2s2 2p3

O (Z = 8): 1s2 2s2 2p4      

F (Z = 9): 1s2 2s2 2p5

Ne (Z = 10): 1s2 2s2 2p6

Mg (Z = 12): 1s2 2s2 2p63s2

P (Z = 15): 1s2 2s2 2p63s23p3

Cl (Z = 17): 1s2 2s2 2p63s23p5

Ar (Z = 18): 1s2 2s2 2p63s23p6

V (Z = 23): 1s2 2s2 2p63s23p64s23d3

      Ge (Z = 7): 1s2 2s2 2p63s23p64s23d104p2

       Kr (Z = 7): 1s2 2s2 2p63s23p64s23d104p6


The sum of all the superscripts is the number of e- and therefore Z.

 

Second Method: Using the afbau diagram

1.    First get the atomic number Z. The atomic number tells you the number of electrons in the atom.

2.    Use the following diagram to fill the orbitals in the correct order and finish when you completed the number of e- for the given element.

http://library.tedankara.k12.tr/chemistry/vol3/Atomic%20orbitals/z61.htm

Write the electrón configuration of the elements Zinc and Silver, using the afbau diagram...

Another way of representing the electrons in an atom is the use of orbital diagrams. The orbital diagrams are boxes in which an arrow up represents one electron in the box, with an specific spin, and two arrows, one up and one down, represents two electrons in the orbital with opposite spins.

 This box represents the electrons in the atom of He : 1s2

Draw the orbital diagram for Boron.

 

 

When you start filling equivalent orbitals in the same level apply the Hund’s rule.

 

Hund’s rule states that single electrons with the same spin may occupy each equal-energy orbital before  additional electrons with opposite spins can occupy the same orbital. In other words: If two or more energetically equivalent orbitals are available (same level, same sublevel), then electrons should be spread out before they are paired up.

The orbital diagram for carbon whose electron configuration is

1s22s22p2

The electronic configuration can be written as: 1s22s22px12py1.

Draw the orbital diagram for N and Ne

 

 

 

 

 

 

The electron configuration can also be written in short form by putting, between brackets, the noble gas before the given element and continue the electron configuration from there.

Examples:

I :     [Kr] 5s2 4d10 5p5

Cs:    [Xe] 6s1

Ga:   [Ar] 4s2 3d10 4p1

 

Two exceptions are Cr: [Ar] 4s1 3d5 and  Cu:  [Ar] 4s1 3d10

Do  problems 18 to 19 on page 139

 

 

 

 

 

 

 

Valence electrons: are the electrons in the atom’s outermost s p orbitals (associated with the atoms highest principal energy level).

 

B (Z = 5): 1s2 2s2 2p1 has 3 valence electron

 

Cl (Z = 17): 1s2 2s2 2p6 3s2 3p5   has 7 valence electrons

 

Ga:   [Ar] 4s2 3d10 4p1 has 3 valence electrons

 

Electron dot structure: Consists of the element’s symbol which represents the nucleus of the atom and the inner electrons, surrounded by dots representing the atom’s valence electrons.

Element   e- Configuration   # of valence e-   Electron-dot structure

Li (Z = 3):      1s2 2s1                     1                     Li .

Be (Z = 4):    1s2 2s2                      2                   . Be.

                                                                               .

B (Z = 5):      1s2 2s2 2p1                       3                   . B .

                                                                                                                                                             

 

 

 

 

 

 

 

 

 

 

 

Complete the electron structures of:

 

 

 

 

 

 

 

C (Z = 6):      1s2 2s2 2p2                4

N (Z = 7):      1s2 2s2 2p3                   5

O (Z = 8):      1s2 2s2 2p4                6

F (Z = 9):       1s2 2s2 2p5                7

Ne (Z = 10):  1s2 2s2 2p6                 8

 

Answer questions 24 to 25 on page 141