"One cannot synthesize what one cannot analyze" (Second law of Synthesis)
My earlier column on the Gamelan got me a lot of positive responses.
Most readers tried the patch and found it, aurally, very interesting.
The majority of us synthesists, have always had a fascination for
percussive musical instruments of Ethnic origins : their awkward scales
and weird
timbres are particularly suitable for e-music production needs.
In this article, we will cover another interesting percussive instrument
: the Balafong . Contrary to the Gamelan, which belongs to the family of
musical instruments called "Metallophones", the Balafong belongs to the
family of musical instruments called "Wood Harmonicons" (ref: H.Helmholtz).
Sympathetic Resonant Chambers
Unlike the Gamelan - which has a gong-like timbre, rich in harmonics
the Balafong's timbre is a sort of hybrid-cross between a dull sounding
marimba and a muffled wooden xylophone. Typically, players of the
Balafong produce tones by striking the wooden sounding bars with hard wooden
mallets.
Each sounding bar is attached to a trapezoidal wooden frame by small
strings. Under the frame, each wooden bar is equipped with resonating
Gourds : they act as sympathetic resonance chambers and amplifiers
(some African Balafong are equipped with coconut shells, containing some
fine pellets : each strike of the mallet produces a typical granular and
resonant sound in the process).
This instrument is played in Western, Central and South-Africa, but
is also found in South-East Asia : this might explain the cultural differences
in tuning and pitch perceptions of the various musical scales used.
The illustration below shows, in Figure 1, a table of Balafong scales,
in cents, compiled and analyzed by acoustician Hermann Helmholtz,
during the middle of the 19th Century. Regretfully, the countries
of origin of the two Balafong scales from Western Africa are not known.
Nor is the one pentatonic scale labeled as being of a South-Pacific origin!
I draw your attention to the oddly Siamese scale :the two values
of G+26cents and G#-29 cents are really too close together for comfort
: they should never be played consecutively! I suspect, that the purpose
of these two tones are to function as a pivot tone to bridge -and to differentiate-
the ascending or descending part of the scale!
Patch Analysis
Figure 3, shows the patch of the Balafong. Although it has been implemented
specifically for the Serge system, users of other synths can easily adapt
it to their specific gear. This is the explanation of the patch...
A sine waveform, with a frequency of 130.81 Hz.(C3) is connected
to the carrier input of ring modulator # 1, Multiplier # 2 and Serge's
middle Wave Multiplier. Another sine waveform, with a frequency of 392
Hz. (G4) is then patched to the modulating signal input of ring modulator
# 1.
A square waveform, with a frequency of 880 Hz. (A5) is patched to
the modulating signal input of Multiplier # 2 as well as to the second
input of the middle Wave Multiplier.
The two ring modulators and the wave multiplier's outputs are then
mixed into a passive audio mixer, whose output is sent to two different
VCF : a Serge VCFQ and a VCFS. The Low Pass outputs of each filter is then
sent to VCA1 and VCA2 for final amplification.
A Serge TKB (Touch activated Keyboard Sequencer) -or any unquantized sequencer having 4 rows of CV outputs available simultaneously - is then used as a master controller :
Sequencer Row A : controls the three VCO's fundamental frequency
(1 Volt.oct.).
Sequencer Row B : controls the two VCF's 1 Volt.oct.inputs.
Sequencer Row C : controls the resonance of the first filter VCFQ
(Frequency and Q settings at 9 o'clock).
Sequencer Row D : controls the slope of the second filter VCFS (frequency
pot at 9 o'clock, VC slope pot at 5 o'clock, resonance pot at 9 o 'clock),
as well as the AM/Ring ratio of Ring Modulator # 1 (VC pot at 7
o'clock) .
KP output : the Keyboard pulse to trigger the two envelopes, which
are set in an anti-log configuration.
Tuning in cents
Using the conversion table in Figure 2, calculate the given Balafong
scale and all deviations, in cents, from known musical tones. For example,
to convert the # 2 scale of the Balafong from Western Africa, substract
or add this scale (in cents) to the nearest number shown on the equal temperament
scale (in cents) and calculate the notes deviations (in cents).
Once the correct scale has been determined, you can start tuning
your VCO's.
First, connect VCO1 sine to a VCA (full VCA) and set it to the required
frequency (C3=130.81Hz.). Proceed to do the same for VCO2
(G4=392 Hz.) and VCO3 (A5=880 Hz.). That done, connect sequencer
output A to the 1 Volt.oct inputs of VCO1, VCO2 and VCO3.
Using an electronic tuning device, which shows the value of a given note in 100 cents increments (from -50 cents to + 50 cents), we can now start to tune all our VCO's to their final values.
As an example, let's take the Balafong scale # 2 of Western Africa
: i.e C, D-48 cents, D#-13 cents, F+33 cents, G+24 cents, A-10 cents, A#+39
cents and C. The first step is C=0 Volt (no change). The second step is
D-48 cents : turn the pot until the tuning device shows the
value of D then, turn the pot counter-clockwise until it reaches
the bottom left of the screen (-50 cents) and fine tune it to -48 cents.
The third step is D#-13 cents : turn the pot until the tuning device
shows the value of D# then, turn the pot counter-clockwise until it reaches
the value of - 13 cents. Proceed with all the other steps as shown. When
all VCO tunings are completed, clear your synth from all patch cords and
bring your
VCA pot back to its 12 o'clock position..
Complete the Balafong patch, as outlined in Figure 3, while being
extremely careful not to touch your VCO's fundamental frequencies nor your
Sequencer Row A pots..
Note: To have a different pallette of colors for the complex tones,
I have used a Serge ring modulator, with AM/Ring VC functions, for VCO1
and VCO2 sine waveforms and a standard multiplier for the sine/square waveforms.
The Wave Multiplier function is to reinforce the fundamental frequency,
while adding a complex granular tone into the mix.
The Balafong being a highly non-linear instrument : the brightness/resonance ratio has to be set individually for each tone (this ratio is set by Sequencer rows B and C). Needless to say, by using high resonance (Q) with a filter initial frequency set very low, might contribute to some unwanted resonance clipping!
I have got good results with a muffled lowest tone C (set sequencer
output B to 9 o'clock and sequencer output C and D to 10 o' clock).
Tone D should also be muffled (10 o'clock) but with a higher resonance
(11 o' clock). Tone D#, G, A# should be brighter (11 o'clock) with more
resonance (12 o 'clock). The last upper tone C should be set at 10 o 'clock
but with a higher resonance (2 o' clock).
Complete your patch as shown, and continue to tweak all pots until you are satisfied with the results...
Enjoy!
André Stordeur
12.20.2002