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Economic Theory

• Typically, you are given a theory like:
Y t = Xt

where Yt and Xt are variables measured at 
time t.

• You want to know if empirical evidence:
– Supports the theory.
– With statistical confidence.

• Time series statistics!
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Coefficients

• You want to test the theory, so you add a 
parameter and an intercept:

Y t = b0 + b1Xt

• Economic theory specifies:
b0 = 0  and  b1 = 1

• Given some data you have to figure out 
what values of b0 and b1 are supported 
empirically.
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One observation

• Suppose in Jan. 2001 Yt=100 and Xt=100.
• This implies that Yt = 0 + 1*Xt

=> Perfect fit!
• However, Yt = 100 + 0*Xt is also a perfect 

fit.
• Therefore, we can not identify both b0 and 

b1 with only one observation.
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Two observations

• Suppose in Dec. 2000 Yt=50 and Xt=50 , in 
Jan. 2001 Yt=100 and Xt=100.

• Here there is only one solution:
Y t = 0 + 1*Xt

• The system is exactly identified and b0=0 
and b1=1 is in accordance with theory.

• In general you need at least as many 
observations as you have parameters.
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Many observations

• It is very imprecise to base anything on only 
two observations.

• Anything unusual happening during those
obs., like an Asian crisis, is very unlikely to 
be informative about the whole population.

• Also, it can be shown that precision 
increases with the number of observations. 

• Collect as much data as possible!
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Independent observations

• With more observations than parameters 
you can not get a perfect fit, however.
– Unless the observations are not independent 

(the previously mentioned two obs. are not 
because the second is just twice the first).

• Therefore, you expect to make an error at 
any point in time no matter how you choose 
the parameters.

8

Error term

• There are other reasons why you don’t 
expect theory to hold at any point in time.
– There may be measurement errors.
– Differences in timing.
– Model is too simple (leaves something out).

=> Add an error term, ut:
Y t = b0 + b1Xt + ut
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Estimation

• How can plausible values for the parameters 
be obtained, that is, how can the model be 
estimated?

• Sample of T observations on both variables.
– Y1, Y2, ..., YT; X1, X2, ..., XT

• It is easy to obtain parameters so that the 
average error is zero.
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Estimating the model

• It turns out that the best (easiest) estimation 
procedure is OLS.

• Ordinary Least Squares (OLS).
– Minimizes the sum of squared residuals (errors)
=> Minimizes the variance of regression errors.

• This avoids making too large negative or 
positive errors.
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Estimation (cont.)

• Fortunately, if you include a constant the 
error term will have a mean of zero by 
construction.

• That is, not only do we not make too large 
errors, on average we make no error at all.

• There are other methods for estimation.
– All you need to know is that for your purpose 

OLS is best.
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Example

• Excel can do OLS!
• Suppose the regression output is:

Y t = 0.2 + 0.7*Xt + ut

• Do you conclude that theory fails because 
b0 is not 0 and b1 not 1?

• You don’t know, there is uncertainty 
because we only observe a snapshot, say 
five years, and with noise. 
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Standard errors

• Fortunately OLS (and Excel) also provides 
us with standard errors of the estimated 
parameters.

• The larger standard errors, the more 
uncertainty.

• If the standard error on b1 is 0, there is no 
uncertainty and we can be 100% certain that 
b1=0.7, and theory is rejected
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Confidence intervals

• Assume we have many observations.
• Then, with 95% confidence we can say that 

a parameter is within an interval of plus, 
minus 2 std. dev. from its estimate.

• For b1:  0.7 - 2*0.1 < b1 < 0.7 + 2*0.1
=> 0.5           < b1 <       0.9

• Because this interval does not include b1=1, 
it is very likely that theory fails. 
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Confidence intervals

• Assume that the standard error for the 
estimate of b0 is 0.5.

• Then the 95% confidence interval for b0 is:   
0.2 - 2*0.5 < b0 < 0.2 + 2*0.5
=>  -0.8     < b0 <      1.2

• Because this interval includes 0 it is very 
likely that b0 is in accordance with theory.
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T-test.

• It is more convenient to test theory using t-
tests.

• If you want to test if an estimated parameter 
is significantly different from a given value, 
compute:

t = (b-b*)/sb

• where b is your estimate, b* is the value of 
interest, and sb is the standard error of b.
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t-test: decision rule

• You will find all you need from the 
regression output. 

• Two sided test:
– Reject the null hypothesis of b=b* if |t| is large.

• How large:
– The t-test is t-distributed, and you can find a 

table in your favorite text book (or the 
handout). 
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t-test: example.

• Estimated b1 is 0.7
• Estimated standard error of b1 is 0.1
• You want to test H0: b1=1.0
• Test statistic is:

t = (0.7-1.0)/0.1 = -3.0
• If you have many obs., say 100, the 5% 

critical value is very close to 2.00
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t-test: example. (cont.)

• because |t|=3.00 > 2.00, you reject the null.
• The estimated parameter is not 1. 
• Had the t-test been 1.5, you would not reject 

that b1=1, since |t|=1.50 < 2.00.
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t-test: How to find critical value

• A 5% significance level in a 2-sided test 
means that we have to cut 2.5% in both tails 
of the distribution.

• We find the 97.5% percentile to be approx. 
2.0

• We know that a t-distribution is symmetric. 
so the 2.5% percentile is -2.0

• That’s why |t| is a 5% test.
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Another example

• You want to test if the constant is 
significantly different from zero.
– Estimated b0 is 0.2
– Std. error of b0 is 0.5

• t = (0.2-0.0)/0.5 = 0.4
• |t|=0.4 < 2.0 => Not statistically significant.
• Cannot reject H0: b0=0
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Comparison

• Confidence intervals and t-tests tell exactly 
the same story.

• In fact, the reason why 2 is used as critical 
value for the t-test in large samples is the 
same as why we subtract and add 2 from the 
estimate to get a confidence interval.
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Sub-set of parameters

• Suppose you have several explanatory 
variables in your model.

• Instead of testing hypotheses on some 
parameters individually, you may want to 
test a joint hypothesis like:
– H0: b1 = b2 = 0

• Individual and joint test results may differ.
• Use an F-test.

24

Insignificant variables

• Get rid of them!
• In a finite sample, parameters that are not 

significantly different from zero:
– Don’t don’t belong in the model.
– Affects estimates of all other parameters.

=> Only trust your results if all parameters 
are significantly different from zero.
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R2

• R2 is a measure of fit for the estimated 
model.

• R2 = fraction of variation in Yt that is 
explained by right hand side (RHS) 
variables.

• R2=0 means no relation at all between Yt 
and RHS => Bad model.

• R2=1 indicates perfect fit => Perfect model.
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R2 - Problem

• PROBLEM: You don’t know what a good 
fit is, and there is no test. 

• R2=0.05 may be a reasonable fit for many 
financial models.

• R2=0.9 may not be good fit in other models
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Plots

• To judge the fit of a model you can plot Yt 
against the values predicted by the model.

• Y t will always be more volatile than 
predictions.

• However, maybe the predictions capture the 
direction of most changes in Yt.

• Always trust tests before R2 and plots.
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Bad news

• The bad news is that OLS only works 
optimally if the error term (residual) is so-
called “white noise”.

• There are three conditions for white noise:
1) Mean zero: Et[ut+1] = 0,  all t
2) Constant variance: Et[ut+1

2] = s2, all t
3) No serial correlation: Et[ut+k|ut-n] = 0, all t,n,k
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Conditions

• The 1st condition is satisfied when using 
OLS, and including a constant.

• Violations of the 2nd condition are very 
difficult to handle. 
=> Ignore them for the purpose of this 
course!
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Serial correlation

• Violations of the 3rd condition are very
serious!

• However, you can typically detect and 
correct for serial correlation.

• Often you find first order serial correlation:
– Et[ut+1|ut] is different from zero.
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Ex.: 1st order serial correlation

• Et[ut+1|ut] = 0.5*ut

=> The correlation between ut and ut+1 is 0.5

• Alternatively, the first order autocorrelation 
coefficient of the residuals is 0.5.

• E.g., if the current error is 10% we expect 
the next error to be 0.5*10%=5%.

32

Implications of ser. corr.

• If the models prediction was 10% above the 
actual outcome, we expect it to be 5% 
above next period.

• That is, given this periods error we can 
forecast next period’s error.

• The model fails to take some structure into 
account when there is serial correlation.
– Model could and should be improved.
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Rational expectations

• Often ut is a rational expectations error.
– Therefore, there cannot be serial correlation.

• If there was, I would be making systematic 
expectations errors. NOT rational!
– If I’m 10% wrong today it is not rational to 

know that I will be 5% wrong tomorrow, 
without taken the information into account!
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Statistical implications

• If there is serial correlation, not just first 
order, standard errors of parameter 
estimates are wrong.
=> You can’t make correct inference.

• All we do involves testing some hypotheses.
– Without correct inference this is an impossible 

task.
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Durbin-Watson test

• Test for first order serial correlation.
• Null hypothesis: no serial correlation.
• DW = 2(1-r1)

where r1 is the first order autocorrelation 
coefficient of the residuals.

• The above expression is an approximation.
• Critical values for DW can be found in 

almost any introductory time series book.
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Durbin-Watson: Rules

• High first order serial correlation means:
DW=2(1-r1) is small.

• Hence, small values of DW rejects the null 
hypothesis of no serial correlation.

• If DW is sufficiently low you have serial 
correlation.

• If DW is sufficiently high you don’t.
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Durbin-Watson: example

• First order autocorrelation is 0.5
=> DW = 2(1-0.5) = 1.0

• According to my textbook:
– DWL=1.65 and DWU=1.69 for our sample size 

of T=100, and 2 right hand side variables in my 
regression.

• Since DW is lower than the lowest critical 
value, we have detected serial correlation.
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Other examples

• Had DW been between the two critical 
values, say 1.67, the test would be 
inconclusive.

• Had DW been above the upper critical 
value, say 2.00, we would have no serial 
correlation.
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Notice:

• The described DW procedure is a test 
against positive serial correlation.
– r1 is positive.

• If you want to test negative serial 
correlation you should use: 4-DW.

• I.e. if 4-DW is sufficiently low, you have a 
problem of negative first order serial 
correlation.
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Correcting for serial correlation

• If you detect serial correlation in the 
residuals, theory may already be wrong!
– E.g., rational expectations ass. may be wrong.

• Otherwise, re-specify your model.
– Include a lagged dependent variable on the 

RHS: 
Y t= b0 + b1Xt + b2Y t-1 + ut.

• Often the serial correlation goes away.
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Serial correlation persists

• Re-specify again!
– include more lags of Y on the right hand side.

• If this doesn’t work, transform your 
variables:
– For example, estimate the model in differences. 

• If nothing works there are only complicated 
methods: 
– Not for FBE 464!
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Trending Variables.

• Variables that “explodes” over time.
• Maybe they:

– get very, very high values.
– just continue to increase.
– never seem to revert towards a natural level.

• That gives us special statistical and 
numerical problems. Variables are non-
stationary and need to be transformed.
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Log of variables

• Instead of the variable itself, e.g. Y, we 
often work on ln(Y). 
=> Very large numbers get smaller.

• Also, macro and financial variables are 
typically log normally distributed (roughly).
=> ln(variable) is normally distributed
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Growth rates

• One way to get rid of the trends discussed 
before is by working on growth rates:
Growth rate 1 of Yt = (Yt-Y t-1)/Yt-1

• Since we often use ln(Yt), a more 
convenient way to compute growth rates is:
Growth rate 2 of Yt = ln(Yt)-ln(Yt-1)
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2 types of growth rates

• If growth rates are small, growth rates 1 and 
2 are very similar.

• If Yt-1=55 and Yt=56
=> G1: Growth rate 1 = (56-55)/55 = 0.0182

G2: Growth rate 2 = ln(56)-ln(55) = 0.0180

• However, if Yt-1=55 and Yt=100
=> G1 = (100-55)/55 = 0.8182
G2 = ln(100)-ln(55) = 0.5978
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Use log growth rates

• Suppose Yt-2=100, Yt-1=200, and Yt=100. 
• Then G1t-1=1.0 and G1t=-0.5.

=> You will conclude that Y changes by an 
average of 0.25 or 25% per period, although 
it ends up unchanged!

• G2t-1=0.69 and G2t=-0.69.
=> You conclude that on average Y does 
not change at all, which is the truth!
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The End.


