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Economic Theory

» Typicdly, you are given atheory like:
Y, =X,
where Y, and X, are variables measured at
timet.

* You want to know if empirica evidence:
— Supports the theory.
— With statisticd confidence.

* Timeseries statistics!

Coefficients

* You want to test the theory, so you add a
parameter and an intercept:
Y= by + bX,
» Economic theory specifies:
b, =0 and b,=1
 Given some datayou have to figure out

what values of by and b, are supported
empiricaly.
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Suppose in Jan. 2001 Y =100 and X=100.
Thisimpliesthat Y,=0 + 1* X,

=> Perfect fit!

However, Y, =100 + 0* X, is dso aperfect
fit.

Therefore, we can not identify both b, and
b, with only one observation.

Two observations

Suppose in Dec. 2000 Y,=50 and X,=50, in

Jan. 2001 Y,=100 and X,=100.

Here there is only one solution:
Y,=0+1*X,

The system is exactly identified and b,=0

and b;=1 isin accordance with theory.

In generd you need a least as many
observations as you have parameters.

Many observations

It is very imprecise to base anything on only
two observations.

Anything unusua happening during those
obs., like an Asian crisis, is very unlikely to
be informative about the whole popul ation.
Also, it can be shown that precision
increases with the number of observations.

Collect as much data as possiblel
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Independent observations

» With more observations than parameters
you can not get aperfect fit, however.

— Unless the observations are not independent
(the previously mentioned two obs. are not
because the second is just twice the first).

» Therefore, you expect to make an error a
any point in time no matter how you choose
the parameters.

Error term

 There are other reasons why you don't
expect theory to hold a any point intime.
— There may be measurement errors.
— Differences in timing.
— Model is too simple (leaves something out).
=> Add an error term, u;:

Y =by+ b X+

Estimation

» How can plausible va ues for the parameters
be obtained, that is, how can the model be
estimated?

» Sample of T observations on both varigbles.
=Yy Yo oo Y3 Xy, Xy vy X7

* It is easy to obtain parameters so that the
average error is zero.
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Estimating the model
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It turns out that the best (easiest) estimation
procedureis OLS.
Ordinary Least Squares (OLS).

— Minimizes the sum of squared residuds (errors)
=> Minimizes the variance of regression errors.

This avoids making too large negative or
positive errors.

10

Estimation (cont.)

Fortunately, if you include a constant the
error termwill have amean of zero by
construction.

That is, not only do we not make too large
errors, on average we make no error  al.
There are other methods for estimation.

— Al you need to know is that for your purpose
OLSis best.

1

Example

Excel cando OLS!

Suppose the regression output is:
Y,=02+0.7*X, + y,

Do you conclude thet theory fails because

b, isnot 0 and b, not 1?

You don’t know, there is uncertainty
because we only observe a snapshot, say
five years, and with noise.

12
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Standard errors
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Fortunately OLS (and Excel) aso provides
us with standard errors of the estimated
parameters.

The larger standard errors, the more
uncertainty.

If the standard error on b, is O, thereis no
uncertainty and we can be 100% certain that
b,=0.7, and theory is rejected

13

Confidence interva s

Assume we have many observations.

Then, with 95% confidence we can say that
aparameter iswithin an interva of plus,
minus 2 std. dev. from its estimate.

Forb;: 0.7-2*0.1<b, <07+2*0.1

=> 05 <b< 09

Because this interval does not include b,=1,
it isvery likely that theory fails.

14

Confidence interva s

Assume that the standard error for the
estimate of by is 0.5.

Then the 95% confidence interva for by is:
0.2-2*05<h,<02+2*05

=> -08 <bh< 12

Because thisinterva includes O it is very
likely that by is in accordance with theory.

15
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T-test.

* It is more convenient to test theory using t-
tests.

* If you want to test if an estimated parameter
is significantly different from a given vaue,
compute:

t = (b-b*)/s,

» where bisyour estimate, b* is the vdue of

interest, and s, is the standard error of b.

16

t-test: decisionrule

* Youwill find dl you need from the
regression output.
» Two sided test:
— Reject the null hypothesis of b=b* if [t| is large.
* Howlarge:

— The t-test is t-distributed, and you can find a
table in your favorite text book (or the
handout).

17

t-test: example.

» Estimated b, is0.7

* Estimated standard error of b; is0.1

* You want to test Hy: b;=1.0

* Test statisticis:
t=(0.7-1.0)/0.1=-3.0

* If you have many obs., say 100, the 5%
critical valueis very close to 2.00

18
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t-test: example. (cont.)

* because [t|=3.00 > 2.00, you reject the null.
 The estimated parameter is not 1.

» Had the t-test been 1.5, you would not reject
that b,=1, since [t}=1.50 < 2.00.

19

t-test: How to find criticd val ue

* A 5% significance level in a2-sided test
means that we have to cut 2.5% in both tails
of the distribution.

» We find the 97.5% percentile to be approx.
20

» We know that at-distribution is symmetric.
so the 2.5% percentileis-2.0

» That’swhy [t]is a5% test.

20

Another example

* Youwant to test if the constant is
significantly different from zero.
— Estimated b, is 0.2
— Std. error of b,is0.5
* t=(0.2-0.0/05=04
* [t|=0.4 < 2.0 => Not statisticdly significant.
* Cannot reject Hy: by=0

21
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Comparison

 Confidence intervals and t-tests tell exactly
the same story.

* Infact, the reason why 2 is used as critica
value for the t-test in large samples is the
same as why we subtract and add 2 from the
estimate to get aconfidence interval.

22

Sub-set of parameters

* Suppose you have severa explanatory
varigbles in your model.

* Instead of testing hypotheses on some

parameters individualy, you may want to

test ajoint hypothesis like:

—Hyb,=b,=0

Individud and joint test results may differ.

» Use an F-test.

23

Insignificant variables

 Get rid of them!
* Inafinite sample, parameters that are not
significantly different from zero:
— Don't don’t belong in the model.
— Affects estimates of dl other parameters.
=>Only trust your resultsif all parameters
aresignificantly different from zero.

24
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R2

* R?2isameasure of fit for the estimated
model.

» R?=fraction of variaionin Y, that is
explained by right hand side (RHS)
variables.

* R?=0 means no relaion a al between Y,
and RHS => Bad model.

 R2=1 indicates perfect fit => Perfect model.

25

R2 - Problem

* PROBLEM: You don't know what agood
fitis, and there is no test.

» R?=0.05 may be areasonable fit for many
financia models.

* R?=0.9 may not be good fit in other models

26

Plots

* To judge the fit of amodel you can plot Y,
against the values predicted by the model.

* Y, will dways be more volatile than
predictions.

» However, maybe the predictions capture the
direction of most changesin'..

o Alwaystrust tests before R2 and plats.

27
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Bad news

 The bad news is that OLS only works
optimdly if the error term (residud) is so-
caled “white noise”.

* There are three conditions for white noise:
1) Mean zero: Elu.]=0, dlt
2) Constant variance:  E[u,,,3 =2 dl t
3) No serid correlation: E[u,,,|u.,] =0, dl t,nk

28

Conditions

The 1st condition is satisfied when using
OLS, and including a constant.

Violaions of the 2nd condition are very
difficult to handle.

=> |gnore them for the purpose of this
course!

29

Serid correlaion

Violations of the 3rd condition are very
serious!

» However, you can typicdly detect and
correct for serid correlation.

 Often you find first order serid correlaion:
— E[u4|u] is different from zero.

30
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Ex.: 1st order serid correlaion

* EfU,lu] = 05%y

=> The correlation between u,and u,,, is 0.5
Alternatively, the first order autocorrelaion
coefficient of the residudsis 0.5.

» Eg, if the current error is 10% we expect
the next error to be 0.5* 10%=5%.

31
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Implications of ser. corr.

If the models prediction was 10% above the
actud outcome, we expect it to be 5%
above next period.

That is, given this periods error we can
forecast next period's error.

The model fails to take some structure into
account when there is serid correlaion.

— Model could and should be improved.

32

Rationa expectations

+ Oftenuy, isarationa expectations error.
— Therefore, there cannot be serid correlation.

* If there was, | would be making systematic
expectations errors. NOT rational!

— If I’'m 10% wrong today it is not rationa to
know that | will be 5% wrong tomorrow,
without taken the information into account!

33

11
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Satistica implications

* If thereis serid correlation, not just first
order, standard errors of parameter
estimates are wrong.

=> You can’'t make correct inference.
 All we do involves testing some hypotheses.

— Without correct inference thisis an impossible
task.

Durbin-Watson test

» Test for first order serid correlaion.
* Null hypothesis: no serid correlaion.
* DW=2(1-ry)
where r, is the first order autocorrelation
coefficient of the residuds.

» The above expression is an gpproximation.

* Critica vaues for DW can be found in
amost any introductory time series book.

35

Durbin-Watson: Rules

High first order serid correlaion means:
DW=2(1-r,) issmadll.

» Hence, small vaues of DW rejects the null

hypothesis of no serid correlaion.

If DW is sufficiently low you have serid

correlation.

If DW is sufficiently high you don't.

36

12
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Durbin-Watson: example

» Frst order autocorrelaionis 0.5

=>DW =2(1-05) = 1.0

» According to my textbook:

— DW,=1.65 and DW,=1.69 for our sample size
of T=100, and 2 right hand side variables in my
regression.

» Since DW islower than the lowest critica
vaue, we have detected serid correlation.

37
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Other examples

» Had DW been between the two criticd
val ues, say 1.67, the test would be
inconclusive.

» Had DW been above the upper critica
val ue, say 2.00, we would have no seria
correlation.

38

Notice:

 The described DW procedure is atest
against positive serid correlaion.
—r, ispositive.

* If you want to test negative serid
correlation you should use: 4-DW.

* le.if 4-DW is sufficiently low, you have a
problem of negative first order serid
correlation.

39

13
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Correcting for serid correlaion

* If you detect serid correlaioninthe
residuds, theory may aready be wrong!
— E.g., rationa expectations ass. may be wrong.
 Otherwise, re-specify your model.

— Include alagged dependent variable on the
RHS:

Y& byt by X+ Yo + U
 Often the serid correlation goes away.

40

Serid correlation persists

* Re-specify again!
— include more lags of Y on the right hand side.

* If this doesn’t work, transform your
variables:

— For example, estimate the model in differences.

« If nothing works there are only complicated
methods:

— Not for FBE 464!

a1

Trending Variables.

» Variables that “ explodes’ over time.
* Maybe they:

— get very, very high vaues.

— just continue to increase.

— never seem to revert towards anaurd level.
That gives us specid statistica and
numerica problems. Variables are non-
stationary and need to be transformed.

42

14
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Log of variables

* Instead of the variable itself, e.g. Y, we
often work on In(Y).
=> Very large numbers get smaller.
» Also, macro and financia variables are
typicaly log normally distributed (roughly).
=> In(variable) is normaly distributed

43
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Growth rates

» One way to get rid of the trends discussed
before is by working on growth rates:
Growthrate 1 of Y, = (Y-Y . )/Y
+ Since we often use In(Y,), amore
convenient way to compute growth ratesis:
Growthrate 2 of Y, = In(Y)-In(Y,)

2 types of growth rates

* If growth rates are small, growthrates 1 and
2 aevery similar.
* If Y, ,=55and Y =56
=> G1: Growth rate 1 = (56-55)/55 = 0.0182
G2: Growth rate 2 = In(56)-In(55) = 0.0180
* However, if Y. ,=55 and Y,=100
=> G1 = (100-55)/55 = 0.8182
G2 = In(100)-In(55) = 0.5978

45
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Use log growth rates

« Suppose Y, ,=100, Y, ,=200, and Y,=100.
« Then G1,,=1.0 and G1,=-0.5.

=> Youwill conclude that Y changes by an
average of 0.25 or 25% per period, dthough
it ends up unchanged!

* G2,,=0.69 and G2,=-0.69.

=> You conclude that on average Y does
not change a dl, whichis the truth!

46

The End.

47
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