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This note continues TN96-04, Modeling Asset Prices as Stochastic Processes I.  It derives

the stochastic process for the asset price in a heuristic manner.  We obtained

The variable dWt is the increment to a Brownian Motion.  Recall that dWt is normally distributed

with E(dWt) = 0, Var(dWt) = dt, and dWt
2 is non-stochastic and equal to dt.  From these results we

state the following:

Given the fact that dSt/St is just a linear transformation of a normally distributed random variable

dWt, then it is also normally distributed.  In this note, we formally derive this stochastic process and

some important results related to it.

The relative return on the asset over the period of time 0 to time dt is

The return from time dt to time 2dt is

This pattern continues so that at a given future time T, the return is
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The overall return on the asset from time 0 to time T is

This return can be expressed as

Suppose we convert the return above into the log return.

We see that the log return for the period of time 0 to time T is the sum of the log returns of the sub-

periods during time 0 to time T.  The central limit theorem says that a random variable that is the

sum of other random variables approaches a normal distribution.  Thus, we know that the return from

time 0 to time T is normally distributed.  In turn we can propose that any of the sub-periods is

infinitesimally small such that it, too, is made up of a series of component returns over

infinitesimally smaller sub-periods.  Hence, we propose that the return over any arbitrary period from

t to t + dt is normally distributed with expectation of : and variance of F2.

We can specify the log return in the following manner:
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We then propose that the log return follows the stochastic process

where the expectation and variance are, therefore,

From here we want the return dSt.  Let us propose the following transformation:

Gt = ln St,

so that

St = exp(Gt).

Now, temporarily dropping the time subscript, we apply Itô’s Lemma to St:

The partial derivatives are easily obtained as

Substituting these results, we get

Since dG = dlnS, the differentials, dG, and dG2, are

with the second result making use of the fact that any power of dt greater than one is zero.

Substituting these results, we obtain
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Dividing both sides by St and adding the time subscript, we now have the stochastic process for dSt,

Defining " = : + F2/2, we have

The expectation and volatility are

Thus, we now have the stochastic differential equations for the return and the log return.  The

return over the longer period is ST/S0.  The log of this, i.e., the log return over the longer period, is

normally distributed.  That means that ST/S0 is lognormally distributed.  Both the infinitesimal return,

dSt/St, and the infinitesimal log return, dlnSt, are normally distributed.

Solving the Stochastic Differential Equation

The equations for the return and log return are stochastic processes, as well as stochastic

differential equations.  A differential equation has a potential solution, which is a function such that

the derivatives conform to the differential equation.  In this context, a solution would be the stock

price at some time t, expressed in terms of the stock price at a previous time such as time 0.

To obtain St in terms of S0, we take the equation for the log return and set up to integrate over

the time interval 0 to t:
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The left-hand side is clearly Gt - G0.  The first integral on the right-hand side is a standard Riemann

integral and becomes

The second integral on the right-hand side is a stochastic integral and one of the simplest of all

stochastic integrals.  It is obtained as

In fact, in this case, the stochastic integral is so simple, it is the same as the Riemann integral.  The

value Wt is the value of the Brownian motion process at time t.  It is quite common that W0 is set at

zero.  So we have FWt. Then Gt - G0 = :t + FWt.  Since St = exp(Gt), and thus, S0 = exp(G0),

We can check to see if this is the solution by using Itô’s Lemma on St:

We obtain the partials by differentiating the solution:  MSt/MWt = StF, M2St/MWt
2 = StF2 and MSt/Mt =

St:.  Now, recall that dWt
2 = dt.  Substituting all of these results and rearranging, we obtain:

This is the original stochastic process.  Thus, our solution is correct.
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Why Solutions to Stochastic Differential Equations are Not Always the Same as Solutions to

Ordinary Differential Equations

Let us see how solving a stochastic differential equation is different from solving an ordinary

differential equation.  Consider the ordinary differential equation (ODE):

dYt = YtdWt,

where Wt is non-stochastic.  This is a fairly simple ODE.  We start by expressing it as

We now perform integration over 0 to t:

With W0 = 0, the solution is lnYt = Wt or Yt = exp(Wt).

Now we let Wt be stochastic.  We start by proposing a general form for the solution.

Specifically, we shall say that Yt = exp(Xt).  In other words, Xt is some function that solves the

equation and in which Xt is a function of Wt.  In the special case Xt = 0, giving Y0 = 1.  In the ODE

case, Xt = Wt.  First we use Itô’s Lemma on Xt and obtain:

The partial derivatives are MXt/MYy = 1/Yt and M2Xt/MYt
2 = -(1/Yt

2).  We also have that dYt = YtdWt

and dYt
2 = Yt

2dt, due to the properties of dWt.  Substituting these results, we obtain

Now we perform the integration,
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With Xt = lnYt, then

Notice that now we have an additional term t/2.  Thus, at least in this common situation, and quite

often otherwise, the solution to an SDE is not the same as a solution to an ODE.

Finding the Expected Future Stock Price

Given the solution,

to the stochastic differential equation, we shall now use it to obtain the expected stock price at t.

Using the above we express the problem as follows:

This expectation is easily evaluated by recognizing that Wt is normally distributed.  We are reminded

that the probability density for a normally distributed random variable Wt, which has mean zero and

variance t is

Thus, we can find the expected value of St by evaluating the following expression:

Write the right-hand side as



8D. M. Chance, TN00-03 Modeling Asset Prices as Stochastic Processes II

Work on the exponent

So now we have

The integrand is the probability density function for a normally distributed random variable with

mean Ft and variance t and, by definition, integrates to a value of 1.0.  Thus,

So our expectation is,

Note that this result is also equal to E[St] = S0e"t.  This is an intuitively simple result.  It says that the

expected future stock price is the current stock price compounded at the expected rate of return.
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