Site hosted by Angelfire.com: Build your free website today!
Main Desktop Lessons Desktop Review Desktop Lab Desktop Chart Desktop

    
Friction

Table of Contents

Introduction
Problems
Answers

Introduction

Friction is a force parallel to the surface in the opposite direction of the motion of the object. The force of friction is greater for objects at rest(static) than in motion(kinetic). The equations are similar

Ffr =   kFN     and FfrsFN

Where FN is the force of the object on the service perpendicular to the surface.

The static friction is greater than the kinetic friction because sk between the same surfaces. The static friction is the force that must be overcome to allow the object to start moving. The kinetic friction is a force trying to slow down and stop an object in motion.

A very important point to remember, the force due to friction is always opposite the direction of the motion of the object NOT the Sum of Forces.

If an object is sliding or rolling down an incline plane at a constant velocity, the Tangent of the Angle on an inclined plane is equal to k.

If an object just starts to slide or roll down an incline plane, the Tangent of the Angle on an inclined plane is equal to s.

Table of Contents

       

Problems

1. An object resist sliding down an incline until the angle reaches 18.6o.  What is the Coefficient of static friction?    Answer to Problem #1.
   
2. How far up the inclined plane can the object be pulled in 8.50 seconds if k is 0.15?   Answer to Problem #2.
       

    

   

   

   

   

    

3. The k is 0.25.  After starting to slide, what is the acceleration and tension on the rope?   

Answer to Problem #3.
        

    

   

   

   

   

4. Calculate the acceleration if the k is 0.18.

Answer to Problem #4.
       

   

   

   

   

   
   

5. Calculate the acceleration if the k is 0.18.

Answer to Problem #5.
       

   

   

   

   

   
   

6. A 50.0 kg block is slid up an inclined plane with an elevation of 15.0o. The initial velocity is 5.36 m/s and the block stops after traveling 4.17 m. What is the coefficient of kinetic friction?

Answer to Problem #6.

   

   
   

7. The block is accelerated 2.56 m/s2 and the coefficient of kinetic friction is 0.18. What is the force on the rope?
      

   Answer to Problem #7.

   

   

8. The kinetic coefficient of friction is 0.26. What is the acceleration of the block?
    

Answer to Problem #8.

Table of Contents

    

Answers

1. An object resist sliding down an incline until the angle reaches 18.6o.  What is the Coefficient of static friction?     
   
FP = Fw Sin 18.6o        FN = FW Cos 18.6o  

Ffr = FN  = FP     FP overcomes Ffr under this condition.

Fw Sin 18.6o = FW Cos 18.6o    Solve for .

   
        Fw Sin 18.6
= -------------------- = Tan 18.6o = 0.337
        FW Cos 18.6o

   

   

2. How far up the inclined plane can the object be pulled in 8.50 seconds if k is 0.15?
       

    

   

   

   

   

    

FP rope = 600. N x Cos 20.0o = 564 N      

This is the force parallel to the inclined plane applied by the rope.
     

FN rope = 600. N x Sin 20.0o = 205 N         

This is the force pulling mass away from inclined plane by the rope.
    

FN mass = 45.0 kg x 9.80 m s -2 x Cos 25.0o = 400. N

This is the force normal to the plane applied by the mass.
   

FP mass = 45.0 kg x 9.80 m s -2 x Sin 25.0o = 186 N

This is the force parallel and down the plane applied by the mass.
   

FN = 400. N - 205 N = 195 N                            FN  =  FN mass  -  FN rope  

FfrFN  =  0.15 x 195 N = 29 N                  This force is parallel and down the inclined plane.

Fparallel = FP rope  -  FP mass  -  Ffr                Acceleration up the inclined plane is only dependent on
                                                                           Forces parallel to the inclined plane.
Fparallel = 564 N - 186 N - 29 N = 349 N

                                                 Fparallel          349 N
Fparallel = ma     thus     a = ---------------  =  ------------ = 7.76 m s -2    
                                                        m                45.0 kg
    

X = 1/2 a t2 = 1/2 x 7.76 m s -2 x (8.50 s)2 = 280. m        Initial velocity was zero.
  

   

   

3. The k is 0.25.  After starting to slide, what is the acceleration and tension on the rope? 
        

    

   

   

   

   

F fr Red mass = FN = 0.25 x 25.0 kg x 9.80 m s -2  =  61 N     This force is in opposition to Fw blue mass.

Fill in the equation F = ma for each mass.   Down for blue mass is positive and to the right for red mass is positive.

T - Ffr =  m red a

m blue g  - T  = m blue a
    

Solve each equation for T.

T  =   Ffr  +   m red a

T  =  m blue g - m blue a
    

T = T     and    Ffr  +   m red a  =  m blue g - m blue a         Solve for a.

m red a  +   m blue a  =   m blue g  -  Ffr  
    

       m blue g  -  Ffr         100 kg x 9.80 m s -2  -  61 N
a = -------------------- =  -------------------------------------------  =  7.35 m s -2  
      m red  +   m blue              25.0 kg + 100. kg
   

Use either equation to solve for T.

T  =  m blue g - m blue a  =  100. kg (9.80 - 7.35) m s -2  =  245 N
    

   

   

4. Calculate the acceleration if the k is 0.18.
       

   

   

   

   

   
   

FN mass = 50.0 kg x 9.80 m s -2 x Cos 30.0o = 424 N

FP mass = 50.0 kg x 9.80 m s -2 x Sin 30.0o = 245 N

Ffr = FN = 0.18 x 424 N = 76 N

Since Frope which is up and parallel to the inclined plane is greater than FP mass the object will move up the inclined plane.  Ffr is always opposite the direction of motion.

Fparallel = FP rope  -  FP mass  -  Ffr                

Fparallel = 600 N - 245 N - 76 N = 279 N

   

                                                 Fparallel          279 N
Fparallel = ma     thus     a = ---------------  =  ------------ = 5.58 m s -2  up the inclined plane
                                                        m                50.0 kg
   

   

   

5. Calculate the acceleration if the k is 0.18.
       

   

   

   

   

   
   

FN mass = 50.0 kg x 9.80 m s -2 x Cos 30.0o = 424 N

FP mass = 50.0 kg x 9.80 m s -2 x Sin 30.0o = 245 N

Ffr = FN = 0.18 x 424 N = 76 N

Since Frope which is up and parallel to the inclined plane is less than FP mass the object will move down the inclined plane.  Ffr is always opposite the direction of motion.

Fparallel = FP mass  -  Ffr  -   FP rope             

Fparallel = 245 N - 76 N - 100 N = 69 N

   

                                                 Fparallel          69 N
Fparallel = ma     thus     a = ---------------  =  ------------ = 1.38 m s -2 down the inclined plane
                                                        m                50.0 kg
   

   

   

6. A 50.0 kg block is slid up an inclined plane with an elevation of 15.0o. The initial velocity is 5.36 m/s and the block stops after traveling 4.17 m. What is the coefficient of kinetic friction?
      

   

   
   

FN mass = 50.0 kg x 9.80 m s -2 x Cos 15.0o = 473 N

FP mass = 50.0 kg x 9.80 m s -2 x Sin 15.0o = 127 N

v2 = vo2 + 2a(x - xo)         Solve for acceleration.

   
      
v2 - vo2           02 - (5.36 m/s)2 
a = -------------  =  ----------------------  =  - 3.44 m s -2  
       2(x - xo)          2(4.17 m - 0 m)
   

Fparallel = ma  = 50.0 kg x (-3.44 m s -2) = -172 N 

The acceleration is down the inclined plane.  The Ffr is down the inclined plane since the object is moving up the inclined plane.   We can change the down direction to the positive and change the sign on the Total force.  We can now solve for Ffr.

Fparallel =  FP mass  +  Ffr   =>  Ffr  =  Fparallel - FP mass  = 172 N - 127 N =  45 N

   
Ffr = FN          Solve for .
    

        Ffr         45 N
= ------ = ------------ = 0.095
        FN         473 N

   

    

7. The block is accelerated 2.56 m/s2 and the coefficient of kinetic friction is 0.18. What is the force on the rope?
      

   

   

   

Frope N  = Frope x Sin 25.0o 

Frope P = Frope x Cos 25.0o  

Fparallel = ma = 60.0 kg x 2.56 m s -2 = 154 N

Ffr = FN mass = 0.18 x 60.0 kg x 9.80 m s -2 = 106 N

Ffr is in the opposite direction of the motion.  

Fparallel = Frope P - Ffr           Solve for Frope P.  

Frope P = Fparallel  +  Ffr    =  154 N + 106 N = 260. N

Frope P = Frope x Cos 25.0o       Solve for Frope
    

               Frope P             260. N
Frope = ---------------  =  ---------------  =  287 N
             Cos 25.0o         Cos 25.0o  
    

   

    

8. The kinetic coefficient of friction is 0.26. What is the acceleration of the block?
    
FN mass = 15.0 kg x 9.80 m s -2 x Cos 28.0o = 130. N

FP mass = 15.0 kg x 9.80 m s -2 x Sin 28.0o = 69.0 N

Ffr = FN mass = 0.26 x 130. N = 33.8 N
    

Since FP mass is greater than Ffr the object accelerates downward.  If Ffr was greater, the object would not slide in either direction.
  

Fparallel = FP mass -  Ffr = 69.0 N - 33.8 N = 35.2 N

Fparallel =  ma     Solve for acceleration.

   
       
Fparallel       35.2 N
a  =  --------------- = ---------- = 2.35 m s -2  down the inclined plane
              m              15.0 kg
   

Table of Contents