Site hosted by Angelfire.com: Build your free website today!
Main Desktop Lessons Desktop Review Desktop Lab Desktop Chart Desktop

      
Reference Circle: Period and Nature SHM

Table of Contents

Introduction
Problems
Answers

      
Introduction

The period of a simple harmonic oscillator is dependent on the stiffness of the spring and the mass that is oscillating.

It is not dependent on the amplitude.

The formula for the period of a simple harmonic motion, SHM, can be derived by comparing SHM to an object rotating in a reference circle.  We can also derive the formula for the position of an oscillating mass as a function of time.

Using the diagram to the left, mass m is rotating counter-clockwise in a circle of radius A with a speed of vo on the top of a table.  When viewed from above, the object is moving in a circle in the xy plane.  However, if viewed from the side, the object is oscillating back and forth in a simple harmonic motion.  

The two triangles are similar.   thus

  

or

This is the same equation we derived in Energy in Oscillator.  Thus the projection on the x axis of an object rotating in a circle has the same motion as a mass at the end of a spring.  The period of SHM is the same as the time for a rotating object to make one complete revolution.

  This time is the circumference of the circle divided by the speed.

   

In Energy in Oscillator we saw that  A / vo  =  ( m / k ) 1/2      substituting into the previous equation we get the following.

      We can also use the relationship between frequency and period to get the following.

 

The reference circle can be used to find the position of a mass undergoing SHM as a function of time.

The reference circle above shows

cos = x/A  thus  x = A cos

Since the mass is rotating with an angular velocity , we can write = t  where is in radians.  Thus

x = A cos t

Since = 2f

x  =  A cos 2ft
   

                    2t
x  =  A cos --------                       Use sin instead of cos if mass starts at equilibrium when t = 0.  
                      T

The diagram to the left shows this relationship.

At t = 0, the mass is at the amplitude.

At t = T, the mass is back at the amplitude.  It should be because the period is the time for a complete cycle.

At 1/4 and 3/4 T the mass is at the equilibrium position.

At 1/2 T, the mass is at - A.

   

    

      

    

Table of Contents

     

Problems

1.     A spring vibrates with a frequency of 3.00 Hz when a 0.500 kg mass is hung from the spring.  Calculate the frequency if a 0.375 kg mass is hung from the spring.
   
2. A 200. g mass oscillates on a horizontal frictionless surface at a frequency of 4.25 Hz with an amplitude of 3.75 cm.  (a) What is the spring constant of this motion?  (b) How much energy is involved in this motion?
    
3. A mass m at the end of a spring vibrates with a frequency of 0.888 Hz.  When an additional 600. g mass is added to m, the frequency is 0.650 Hz.  What is the value of m?
   
4. A 0.700 kg mass vibrates according to the equation  x = 0.450 cos 8.40t, where x is in meters, and t in seconds.  Determine (a) the amplitude, (b) the frequency, (c) the period, and (d) the kinetic energy and potential energy when x = 0.300 m.
    
5. A 15.0 g bullet strikes a 0.500 kg block attached to a fixed horizontal spring whose spring constant is 5.70 x 10 3 N/m and sets it into vibration with an amplitude of 21.5 cm.  What was the speed of the bullet before impact if the two objects move together after impact?
   
6. At t = 0, a 750. g mass at rest on the end of a horizontal spring ( k = 225 N/m ) is struck by a hammer, which gives it an initial speed of 3.15 m/s.  Determine (a) the period and frequency of the motion, and (b) the amplitude.

Table of Contents

    

Answers

1.     A spring vibrates with a frequency of 3.00 Hz when a 0.500 kg mass is hung from the spring.  Calculate the frequency if a 0.375 kg mass is hung from the spring.
   
   
   Set up an equation for the ratio of the frequencies.  k is constant.

    

   

f2            m2 -1                   m1 
---   =  ( -------- ) 1/2    =  ( ----- ) 1/2    
Solve for f2.
f1           m1 -1                    m2  
    

   
                    m1                                   0.500 kg
f2  =  f1 x ( ----- ) 1/2   =  3.00 Hz x ( -------------- ) 1/2  =  3.46 Hz
                   m2                                   0.375 kg 
    

   

   

2. A 200. g mass oscillates on a horizontal frictionless surface at a frequency of 4.25 Hz with an amplitude of 3.75 cm.  (a) What is the spring constant of this motion?  (b) How much energy is involved in this motion?
    
   
  Solve for k.

    

  
                k
f 2  =   ------------   =>   k  =  f 2 4 2 m  =  ( 4.25 s -1 ) 2 x 4 x 2 x 0.200 kg  =  143 N/m
            4 2 m

   
E = kA2 x 143 N/m x ( 0.0375 m )2  =  0.101 J

     

   

   

3. A mass m at the end of a spring vibrates with a frequency of 0.888 Hz.  When an additional 600. g mass is added to m, the frequency is 0.650 Hz.  What is the value of m?
   
   
   Set up an equation for the ratio of the frequencies.  k is constant.

    

   

f2            m2 -1                   m1                        m
---   =  ( -------- ) 1/2    =  ( ----- ) 1/2   =  ( --------------- ) 1/2         
  Solve for m.
f1           m1 -1                    m2                  m + 600. g 

   

f2 ( m + 600. g ) =  f1 m  =  f2 m  +  600 f2      

f1 m  -  f2 m  =  600 f2     
    

           600 f2            600. g x 0.650 Hz
m  =  ------------  =  ------------------------------  =  1840 g
          f1  -  f2           0.888 Hz  -  0.650 Hz
    

        

   

4. A 0.700 kg mass vibrates according to the equation  x = 0.450 cos 8.40t, where x is in meters, and t in seconds.  Determine (a) the amplitude, (b) the frequency, (c) the period, and (d) the kinetic energy and potential energy when x = 0.300 m.
    
   
The calculator must be set on radians instead of degrees.

x  =  A cos 2ft   

(a)  The amplitude must be 0.450 m

(b)   2ft   =  8.40t           t cancels.   Solve for f.

   
         8.40         8.40
f  =  --------  =  -------  =  1.34 Hz
         2
           2
   

(c)    T  =  1 / f  =  ( 1.34 s -1 ) -1  =  0.746 s
   

(d)    E = kA2   =  PE  +  KE         First calculate value of k.

        mg  =  - kA                                     Maximum force is at the amplitude.

      
        mg           0.700 kg x 9.80 m s -2  
k = -------   =  -------------------------------  =  15.2 N/m
        - A                    0.450 m

   
E = kA2  =  x 15.2 N/m x ( 0.450 m ) 2  =  1.54 J

PE  =  kx2   =  x 15.2 N/m x ( 0.300 m ) 2  = 0.684 J

KE  =  E  -  PE  =  1.54 J  -  0.684 J  =  0.86 J
   

   

   

5. A 15.0 g bullet strikes a 0.500 kg block attached to a fixed horizontal spring whose spring constant is 5.70 x 10 3 N/m and sets it into vibration with an amplitude of 21.5 cm.  What was the speed of the bullet before impact if the two objects move together after impact?
   
    
E  =   kA2  =  x 5.73 x 10 3 N/m x ( 0.0215 m ) 2  =  1.32 J             This is the Total Energy of the System.

KE = E = mv2                                    All of this energy is due to the bullet.

    
           2 KE                   2 x 1.32 J
v  =  ( -------- ) 1/2   =  ( --------------- ) 1/2  =  39.8 m/s        
This is the speed of the bullet.
              m                      0.015 kg
   

   

   

6. At t = 0, a 750. g mass at rest on the end of a horizontal spring ( k = 225 N/m ) is struck by a hammer, which gives it an initial speed of 3.15 m/s.  Determine (a) the period and frequency of the motion, and (b) the amplitude.
    
    
First solve for the Mechanical Energy.  This will allow you to calculate the amplitude.

E = mv2 =  x 0.750 kg x ( 3.15 m s -1 ) 2  =  3.72 J
   

E = kA2              Solve for the amplitude.
   

             2E                  2 x 3.72 J
A  =  ( ------ ) 1/2  =  ( --------------- ) 1/2  =  0.182 m
              k                    225 N/m


      2 x x 0.182 m
  =  -----------------------  =  0.363 s
            3.15 m/s
    

f  =  T -1  =  ( 0.363 s ) -1  =  2.75 s -1  

An alternative method involves using the following to calculate the period at the beginning.


   
    

 Table of Contents