Site hosted by Angelfire.com: Build your free website today!
Main Desktop Lessons Desktop Review Desktop Lab Desktop Chart Desktop

      
Statics

Table of Contents

Introduction
Problems
Answers

      
Introduction

A special case of motion exist where there is no net force and no net torque.  Although it is extremely rare to find no force at all, there are many cases with no net force and no net torque.  The condition is easy to recognize because there is no translational or angular acceleration.

A special category is when there is no angular or translational motion.  This category allows us to set up problems where force and torque are conserved in every plane.  An object under this set of conditions is said to be at equilibrium.  

We will also be looking at situations in which the force applied is sufficient to visibly deform or even break the object.

Table of Contents

     

Problems

1.      The hanging mass is 25.0 kg and the angle is 35.0o.  

(a)  What is the force applied to the leg?

(b)  What holds the person in place in the bed?

   

 Answer to #1

   

   

   

   

2. Josh, 71.0 kg, can do 25 pull-ups in a row.  However, he cannot do a single pull-up when he has a 60.0 kg back pack.  To find out how close he gets, he stands on a scale while trying the pull-up.  His best reading is 15.0 kg.  How much force is he exerting?      Answer to #2

    

3. Calculate if the cable to the left exerts 75.0 N and the cable up and to the right exerts 550. N.

Calculate the force on the cable if the cable dropped straight down from the ceiling and the mass of the chandelier.

Why would we use the arrangement shown to the left instead of having the cable drop straight down from the ceiling?

Answer to #3   

   

       
      

4.

The see-saw above has a mass of 50.0 kg that has its center of gravity above the fulcrum.  Ralph, 72.0 kg, is on the left 225 cm from the fulcrum.  Cindy, 56.5 kg, is on the right.  (a) How far from the fulcrum must Cindy sit to be in equilibrium?  (b) What is the force exerted by the fulcrum on the see-saw?   Answer to #4

   

5. A 350. kg commercial refrigerator is resting on a 555 kg, 3.00 m uniform beam.  The refrigerator is  1.25 m from the right side.  Calculate the force that each support applies to the beam.

 Answer to #5  

   

   

   

   

                          

    

6. A 5.00 m uniform beam has a mass of 100. kg.  There is a distance of 1.50 m between the two supports.  Calculate the force on each support.

 Answer to #6  

   

   

   

   

    
    

7. A 1000. kg safe is 2.00 m from the right edge of a 6.00 m uniform beam with a mass of 500. kg.  If there is a 2.00 m distance between the two supports, what is the force on each support?

   

 Answer to #7  

   

   

   
   

8. The uniform ladder to the left has a mass of 45.0 kg.  It reaches 5.55 m up the wall and is 1.00 m away from the wall.  

(a)  Calculate the force of the ladder on the wall.

(b)  Calculate the force of the ladder on the ground.

  

   Answer to #8

   

   

   

   

   

   

   
   

9. A 250. kg uniform beam is 2.00 m long.  It is attached to a vertical support 1.00 m from the top of the support.  A 500. kg sign is attached to the beam 1.75 m from the vertical support.

(a)  Calculate the force on the cable attached to the end of the beam and the top of the vertical support.

(b)  Calculate the forces where the beam is attached to the support.

   

 Answer to #9  

   

    

     
   

10. The traffic signal to the left has a mass of 85.5 kg.  If is 15.0o, what is the force on each cable? 

   

  Answer to #10 

   

   

   

    

   
   

11. A 65.6 kg traffic light is attached to the end of a 125 kg uniform beam that is 3.00 m long.  The beam is attached to a vertical support with a of 40.0o and 1.50 m from the top of the vertical support.  A cable is attached at a right angle from the top of the vertical support. 

(a)  Calculate d2, the distance from where the cable attaches to the uniform beam to the end of the beam.

(b)  The force on the cable.

(c)  The forces where the beam is attached to the vertical support.

  Answer to #11

Table of Contents

    

Answers

1.      The hanging mass is 25.0 kg and the angle is 35.0o.  

(a)  What is the force applied to the leg?

(b)  What holds the person in place in the bed?

   

   

   

   

   

   

     
F = mg = 25.0 kg x 9.80 m s -2  =  245 N

This is the tension on the rope both on the top and the bottom.  Tension is always a pull.  The vertical components cancel each other.  Only the horizontal component is stretching the leg.

Fhorizontal  =   2 x Tension x Cos 35.0o  =  2 x 245 N x Cos 35.0o  =  401 N

Observe that the horizontal force on the leg is greater than the force created by the mass.  If the person tries to raise or lower his leg, it will create an imbalance in the vertical components because the angles will no longer be equal.  This will accelerate the leg in the direction to put in back in the proper allignment.

The person is held in place in the bed by friction.  If the desired force on the leg is greater than friction can create, the person would have to be strapped into the bed.
   

   

   

2. Josh, 71.0 kg, can do 25 pull-ups in a row.  However, he cannot do a single pull-up when he has a 60.0 kg back pack.  To find out how close he gets, he stands on a scale while trying the pull-up.  His best reading is 15.0 kg.  How much force is he exerting?

    

   
Total mass of Josh and Pack = 71.0 kg  +  60.0 kg  =  141.0 kg

Total downward force = 141.0 kg x 9.80 m s -2  =  1380 N

Downward force on scale = 15.0 kg x 9.80 m s -2  =  147 N

   
Force Exerted = Total downward force  -  Downward force on scale  =  1380 N  -  147 N  =  1230 N
   

   

   

3. Calculate if the cable to the left exerts 75.0 N and the cable up and to the right exerts 550. N.

Calculate the force on the cable if the cable dropped straight down from the ceiling and the mass of the chandelier.

Why would we use the arrangement shown to the left instead of having the cable drop straight down from the ceiling?

   

   

       
      

   
Forceright  =  Forceleft  =  75.0 N            This is the horizontal component at .  
   

                           F horizontal                         75.0 N
     
=  Cos -1 ( ----------------- )  =  Cos -1 ( ----------- ) =  82.2o  
                           F tension                              550. N

     =  550. N x Sin 82.2o  =  545 N

    The chandelier only has a vertical component.  The vertical component of
    the cable must match this force in the opposite direction.

                 
   
              
F              545 N
mass =  -----  =  -----------------  =  55.6 kg
               g           9.80 m s -2  
   

The cable must be attached to a support strong enough for the applied force.  If a support is not in the proper location, this can be used to get the chandelier in the desired location without adding additional supports.
    

   

   

4.

The see-saw above has a mass of 50.0 kg that has its center of gravity above the fulcrum.  Ralph, 72.0 kg, is on the left 225 cm from the fulcrum.  Cindy, 56.5 kg, is on the right.  (a) How far from the fulcrum must Cindy sit to be in equilibrium?  (b) What is the force exerted by the fulcrum on the see-saw?

   

   
Net Force = 0   and Net Torque = 0   

  F Ralph  =  72.0 kg x 9.80 m s -2  =  706 N

  F Cindy  =  56.5 kg x 9.80 m s -2  =  554 N

  F board  =  50.0 kg x 9.80 m s -2  =  490. N

    

    

Counter-clockwise torque  =   Clockwise torque        Use the fulcrum as the axis of rotation.  Since the center of gravity is at the fulcrum, the torque at this point is zero.

F Ralph d Ralph  =  F Cindy d Cindy   
   

                  F Ralph d Ralph         706 N x 225 cm
d Cindy  =  --------------------  =  -----------------------  =  287 cm from the fulcurm
                      F Cindy                       554 N
   

All of the above forces are downward, the only upward force at the fulcrum must balance the total of these forces.

F N  =  706 N  +  554 N  +  490. N  =  1750. N
   

   

   

5. A 350. kg commercial refrigerator is resting on a 555 kg, 3.00 m uniform beam.  The refrigerator is  1.25 m from the right side.  Calculate the force that each support applies to the beam.

   

   

   

   

   

                          

    

   
F = 0   and  = 0

d1 = 1.50 m           d2  =  0.25 m           d3  =  1.25 m

F  =  mg

F R  =  350. kg  x  9.80 m s -2  =  3430 N

F CG  =  555 kg x 8.90 m s -2  =  5440 N

Use F1 as the axis of rotation.  This leaves only one unknown term.

Clockwise Torque = Counter-clockwise Torque

FCG d1  +  FR (d1 + d2)  =  F2 (d1 + d2 + d3)                        Solve for F2.
   

            FCG d1  +  FR (d1 + d2)          5440 N x 1.50 m  +  3430 N x 1.75 m
F2  =  ---------------------------------  = ----------------------------------------------------  =  4720 N
               (d1 + d2 + d3)                                     3.00 m

   

Since all the forces except one are now known, we can use Sum of Forces to solve for the unknown.  Set up forces as positive and down forces as negative.

F1  +  F2  -  FR  -  FCG  =  0                            Solve for F1.

F1  =  -  F2  +  FR  +  FCG  =  - 4720 N  +  5440 N  +  3430 N  =  4150 N
    

   

   

6. A 5.00 m uniform beam has a mass of 100. kg.  There is a distance of 1.50 m between the two supports.  Calculate the force on each support.

   

   

   

   

   

    
    

   
F = 0   and  = 0

d1  =  1.50 m        d2  =  3.50 m           dCG  =  2.50 m      (dCG = distance from either end to FCG)

F  =  mg

F CG  =  100. kg  x  9.80 m s -2  =  980. N

Use F1 as the axis of rotation.  This leaves only one unknown term.

Clockwise Torque = Counter-clockwise Torque

F2d1  =  FCG dCG                            Solve for F2.
   

            FCG dCG         980. N x 2.50 m
F2  =  --------------  =  -----------------------  =  1630 N
               d1                     1.50 m
   

Since all the forces except one are now known, we can use Sum of Forces to solve for the unknown.  Set up forces as positive and down forces as negative.

F1  +  F2  -  FCG  =  0                                     Solve for F1.

F1  =  FCG  -  F2  =  980. N  -  1630 N  =  -650 N

Although we drew F1 as an upward force, it is actually and downward force.   This affects the type of connection necessary when building the cantilever.
   

   

   

7. A 1000. kg safe is 2.00 m from the right edge of a 6.00 m uniform beam with a mass of 500. kg.  If there is a 2.00 m distance between the two supports, what is the force on each support?

   

   

   

   

   
   

  
F = 0   and  = 0

d1  =  2.00 m        d2  =  2.00 m       d3 = 4.00 cm    dCG  =  3.00 m      (dCG = distance from either end to FCG)

F  =  mg

F CG  =  500. kg  x  9.80 m s -2  =  4.90 x 103 N

Fsafe  =  1000. kg x 9.80 m s -2  =  9.80 x 103 N

Use F1 as the axis of rotation.  This leaves only one unknown term.

Clockwise Torque = Counter-clockwise Torque

F2d1  =  FCG dCG  + Fsafedsafe                         Solve for F2.

            FCG dCG    + Fsafedsafe         4.90 x 103 N x 3.00 m  +  9.80 x 103 N x 4.00 m
F2  =  --------------------------------  =  -----------------------------------------------------------------  =  2.70 x 104 N
                              d1                                                      2.00 m
   

Since all the forces except one are now known, we can use Sum of Forces to solve for the unknown.  Set up forces as positive and down forces as negative.

F1  +  F2  -  FCG  - Fsafe  =  0                                     Solve for F1.

F1  =  FCG  +  Fsafe  -  F2  =  4.90 x 103 N  +  9.80 x 103 N  -  2.70 x 104 N  =  - 1.23 x 104 N

Although we drew F1 as an upward force, it is actually and downward force.   This affects the type of connection necessary when building the cantilever.
   

   

   

8. The uniform ladder to the left has a mass of 45.0 kg.  It reaches 5.55 m up the wall and is 1.00 m away from the wall.  

(a)  Calculate the force of the ladder on the wall.

(b)  Calculate the force of the ladder on the ground.

  

   

   

   

   

   

   

   

   
   

    
F = 0   and  = 0

d1  =  1.00 m        d2  =  5.50 m       

dladder = ( ( 1.00 m )2  +  ( 5.50 m )2 ) 1/2  =  5.59 m
    

                      d2                         5.50 m
  = Tan -1 ( ----- )  =  Tan -1 ( ------------ ) = 79.7o
                      d1                        1.00 m
   

dCG  =  2.80 m      (dCG = distance from either end to FCG)

F  =  mg

F CG  =  45.0 kg  x  9.80 m s -2  =  441 N

Use where ladder touches the ground as the axis of rotation.  This leaves only one unknown term.  All forces are forces on the ladder.  The ladder applies an equal but opposite force on both the wall and the grass.

Clockwise Torque = Counter-clockwise Torque

dcgFCG  x Cos  =  dladder x F N ladder                   Solve for F N ladder 

   
                     dcgFCG  x Cos
           2.80 m x 441 N x Cos 79.7o
FN ladder  =  -----------------------  =  --------------------------------------  =  221 N
                           dladder                                5.59 m
   

F N Wall  =  F N ladder x Cos  =  221 N x Cos 79.7o  =  39.5 N

F P Wall  =  F N ladder x Sin  =  221 N x Sin 79.7o  =  217 N

   
F Horizontal   = 0   and  F Vertical   = 0              These are the forces on the ladder.  
   

F down  =  F up       F W ladder   =  F N Grass  +  F P Wall           Solve for F N Grass.
   
F N Grass  =  F W ladder  -   F P Wall  =  441 N  -  217 N  =  224 N
   

F Left  =  F Right        F N Wall  =  F P Grass  =  39.5 N
   

The Ladder applies an equal and opposite force on the Grass.

F Ladder on Grass  =  ( F Left2  +  F Down2 ) 1/2 

F Ladder on Grass   =  ( ( 39.5 N )2  +  ( 224 N )2 ) 1/2  

F Ladder on Grass  =  227 N

    
                       F Left                            39.5N
A = Tan - 1 ( ----------- )  =  Tan -1 ( ------------ )  =  10.0o
                      F Down                           224 N
   

   

   

9. A 250. kg uniform beam is 2.00 m long.  It is attached to a vertical support 1.00 m from the top of the support.  A 500. kg sign is attached to the beam 1.75 m from the vertical support.

(a)  Calculate the force on the cable attached to the end of the beam and the top of the vertical support.

(b)  Calculate the forces where the beam is attached to the support.

   

   

   

    

     
   

   
F = 0   and  = 0

d1  =  1.75 m        d2  =  2.00 m    d3  =  1.00 m

d CG  =  1.00 m   from either end

F = mg

F sign  =  500. kg x 9.80 m s -2  =  4.90 x 10 3 N

F CG =  250. kg x  9.80 m s -2  =  2450 N
   

                       d3                     1.00 m
    = Tan -1 ( ---- ) = Tan -1 ( ----------- ) = 26.6o
                       d2                     2.00 m
    

Use where beam touches the support as the axis of rotation.  This leaves only one unknown term.  The forces are forces on the beam.  The beam applies an equal but opposite force on support and cable.

Clockwise Torque  =  Counter-clockwise Torque

F CG  x  d CG  +  F sign x d1  =  F cable x d2 x Sin                 Solve for F cable  
    

                  F CG  x  d CG  +  F sign x d1           2450 N x 1.00 m  +  4.90 x 10 3 N x 1.75 m
F cable  =  -------------------------------------  =  ------------------------------------------------------------  =   1.23 x 10 4 N
                            d2 x Sin
                                           2.00 m x Sin 26.6o    
   

F up cable  =  F cable x Sin   =  1.23 x 10 4 N  x  Sin 26.6o  =  5510 N

F left cable  =  F cable x Cos   =  1.23 x 10 4 N  x  Cos 26.6o  = 1.10 x 10 4 N

The Support applies equal forces in opposite directions on the cable.

   
F Horizontal   = 0   and  F Vertical   = 0              These are the forces on the beam.  
   

F down  =  F up       F CG  +  F sign   =  F up cable  +  F up Support           Solve for F up Support.
   
F up Support  =  F CG  +   F sign  - F up cable  =  2450 N  +  4.90 x 10 3 N  -  5510 N  =  1840 N
   

F Left  =  F Right        F left cablel  =  F right support  =  1.10 x 10 4 N
   

The Beam applies an equal and opposite force on the Support.

F beam on support  =  ( F Left2  +  F Down2 ) 1/2 

F beam on support   =  ( ( 1.10 x 10 4 N )2  +  ( 1840 N )2 ) 1/2  

F beam on support  =  2140 N

    
                       F Left                            1.10 x 10 4 N
A = Tan - 1 ( ----------- )  =  Tan -1 ( ------------------- )  =  30.9o
                      F Down                              1840 N
   

   

   

10. The traffic signal to the left has a mass of 85.5 kg.  If is 15.0o, what is the force on each cable? 

   

   

   

   

   

    

   
   

   
F = 0   and  = 0

  =  15.0o  

F = mg

F sign  =  85.5 kg x 9.80 m s -2  =  838 N

F up  =  F down  

2 x F cable Sin  =  F sign         Solve for F cable .

   
                   F sign                       838 N
F cable  =  ------------------  =  ---------------------  =  1620 N
                 2 x Sin
                 2 x Sin 15.0o     
   

   

   

11. A 65.6 kg traffic light is attached to the end of a 125 kg uniform beam that is 3.00 m long.  The beam is attached to a vertical support with a of 40.0o and 1.50 m from the top of the vertical support.  A cable is attached at a right angle from the top of the vertical support. 

(a)  Calculate d2, the distance from where the cable attaches to the uniform beam to the end of the beam.

(b)  The force on the cable.

(c)  The forces where the beam is attached to the vertical support.

     

   

    

    

    

   

F = 0   and  = 0

  =  40.0o  

F = mg

F sign  =  65.6 kg x 9.80 m s -2  

F sign  =  643 N
   

F CG  =  125 kg x 9.80 m s -2  

F CG  =  1230 N

d 1  =  1.50 m

length beam  =  3.00 m

                               d1             1.50 m
d beam to cable  =  ---------  =  ----------------  =  1.96 m
                            Cos
         Cos 40.0o  

   
Use where beam touches the support as the axis of rotation.  This leaves only one unknown term.  The forces are forces on the beam.  The beam applies an equal but opposite force on support and cable.

Clockwise Torque  =  Counter-clockwise Torque

length beam x Fsign Sin   length beam x FCG Sin  d beam to cable  x F cable         Solve for F cable .

    
                 
length beam x Fsign Sin   length beam x FCG Sin   
F cable  =  -------------------------------------------------------------------------
                                     d beam to cable   
    

                        3.00 m x 643 N x Sin 40.0o  + x 3.00 m x 1230 N x Sin 40.0o 
F cable  =  -------------------------------------------------------------------------------------  =  1240 N
                                             1.96 m 
    

F up  =  F down         F beam up  =  F CG  +  F sign   =  1230 N  +  643 N  =  1870 N
   

F right  =  F left        F beam right  =  F cable  =  1240 N
    

Beam applies an opposite and equal force on the Support.

F beam on support  =  ( F Left2  +  F Down2 ) 1/2 

F beam on support   =  ( ( 1240 N )2  +  ( 1870 N )2 ) 1/2  

F beam on support  =  2240 N

    
                       F Down                         1870 N
A = Tan - 1 ( ----------- )  =  Tan -1 ( ------------- )  =  56.5o
                      F Left                            1240 N

     

Table of Contents