Site hosted by Angelfire.com: Build your free website today!
Main Desktop Lessons Desktop Review Desktop Lab Desktop Chart Desktop

    
Vectors - 2 Dimension 

Table of Contents

Introduction
Vector Problems
Vector Answers

    

     

Introduction

Vectors can be added if direction is taken into account. 

The example to the left shows the graphical addition of the red, blue, green, and purple vectors.

The end of 1 vector is the start of the next vector.

After all 4 vectors have been added; the resultant vector is the vector starting from the beginning of the first vector, red, to the end of the last vector, purple.

In this drawing, the resultant vector is the black vector.

    

    

    

    

The graphical method gives a good view of the problem; however, it is not the most accurate method.

There are two trig methods that can be used to add vectors.

1.
a. Draw the first two vectors using the graphical method and complete the parallelogram.
   
b. Draw the resultant vector and use trig to calculate the resultant vector.
   
c. Draw the resultant vector and the third vector using the graphical method.
   
d. Draw the resultant vector of step c and use trig to calculate the resultant vector.
   
e. Continue until you have added all of the vectors.  The last resultant vector is the total resultant vector.
     
f. This method is best used when there are only two vectors.

    

2.
a. Pick two directions that are at right angles to each other.  Many times we will use North-South vs East-West  or  horizontal vs vertical.
     
b. Break each vector into two components.  For each direction assign a positive and negative direction.  If North is positive, then South is negative.  
   
c. Add all of the components in the same direction.
    
d. Calculate the resultant of the two total components.
    
e. This method is quicker when there are multiple vectors being added.  It can be used with only two vectors.  It has several advantages when doing projectile problems.

         


       
The red vector is 12.0 cm and the blue vector is 10.0 cm.   Calculate the resultant vector.

 

Work this problem using the 1st method.

 


     
Adjacent angles in the parallelogram 
have a total of 180o.
Complete the parallelogram.

Calculate the angle opposite the resultant.

c2  =  a2  +  b2  - 2ab Cos C

c = (a2  +  b2  -  2ab Cos C) 1/2  

    
c = ( (12.0 cm)2  +  (10.0 cm)2  -  12.0 cm x 10.0 cm x Cos 102o ) 1/2  

Resultant = 16.4 cm

     

Use the Law of Cosines to find the magnitude of the resultant.
Clockwise angle from the red vector.  

Blue vector is opposite this angle.
     

Sin B      Sin A                              b Sin A
------- = ----------  =>  B = Sin -1 ( ------------ )
  b              a                                        a

   
                                             10.0 cm x Sin 102o 
Clockwise angle = Sin -1 ( --------------------------- ) = 36.6o 
                                                    16.4 cm

    
The resultant vector is 16.4 cm 36.6o clockwise from the red vector.

Since the clockwise and counter clockwise angles add up to 78o ,
the counter clockwise angle is 41.4o .

The resultant vector is 16.4 cm 41.4o counter clockwise from the blue vector.

Use the Law of Sines to calculate the angle clockwise angle from the red vector or the counter clockwise angle from the blue vector.

      

Calculate the resultant vector if you add 13.7 cm at 85.0o, 9.32 cm at 125.0o, and 18.4 cm at 235.0o.

   

   

   

   

   

   

   

 

Use the Compass to determine the quadrant for each vector.

 

North = 13.7 x Cos 85.0o 
           = 1.19 cm

East = 13.7 cm x Sin 85.0o 
         = 13.6 cm
   
    
    

South = 9.32 cm x Cos 55.0o
          = 5.35 cm

East = 9.32 cm x Sin 55.0o
         = 7.63 cm
   
    
   

South = 18.4 cm x Cos 45.0o
          = 13.0 cm

West = 18.4 cm x Sin 45.0o  
          = 13.0 cm

      

Draw each vector completing the rectangle for each vector.

(With practice, you can do the work by visualizing the drawings.)

Break each vector into components.  The components are the sides of the rectangle.

    
           opposite
Sin = ----------------
          hypotenuse 
   

opposite = hypotenuse x Sin

   

             adjacent
Cos = -----------------
            hypotenuse
   

adjacent = hypotenuse x Cos

    

South positive and North negative

East positive and West negative

   
North-South =  - 1.19 cm + 5.35 cm + 13.0 cm = + 17.2 cm (South)

East-West = 13.6 cm + 7.63 cm - 13.0 cm = + 8.2 cm  (East)

     

For each dimension, assign a positive and negative.

    

Add the vectors in the same dimension.

     

     

Resultant is

19.1 cm at 154.2o   

Resultant = 
      ((17.2 cm)2 + (8.2 cm)2) 1/2 

Resultant = 19.1 cm

    
Angle between East and Vector

                           17.2 cm
Angle = Sin -1 ( ------------- )
                           19.1 cm

Angle = 64.2o  

  

Heading = 90.0o + 64.2o 

Heading = 154.2o  

 

Draw the two components and solve for the resultant vector using 

hypotenuse = (a2 + b2) 1/2  

   

Solve for one of the two angles and convert into a heading.

    

                             opposite
Angle = Sin -1 ( ----------------- )
                           hypotenuse

   

 

Table of Contents

       

      

Vector Problems

Calculate the resultant vector for each of the following.
     
1. 25.3 cm and 18.6 cm separated by 123.0o.
    
2. 8.64 cm and 9.32 cm separated by 38.4o.
     
3. 5.93 cm at a heading of 75.0o, 3.17 cm at a heading of 125.0o, 8.68 cm at a heading of 218.0o, and 4.33 cm at a heading of 313.0o.
    
4. 6.89 cm at a heading of 115.0o, 5.11 cm at a heading of 31.0o, 4.22 cm at a heading of 314.0o, and 8.14 cm at a heading of 193.0o.

 

Table of Contents

   

   

Vector Answers

Calculate the resultant vector for each of the following.
     
1. 25.3 cm and 18.6 cm separated by 123.0o.
    

    
First draw the vectors.  

       
                                                                   Complete the parallelogram.

Angle = 180o - 123.0o  =  57.0o                  180o = Sum of adjacent angles
                                                                    
in a parallelogram

     

Use the Law of Cosines to find the magnitude of the resultant.

c2  =  a2  +  b2  - 2ab Cos C    =>    c = (a2  +  b2  -  2ab Cos C) 1/2  
   

resultant = ((25.3 cm)2 + (18.6 cm)2 - 2 x 25.3 cm x 18.6 cm x Cos 57o) 1/2 

resultant = 21.8 cm

      

      

Use the Law of Sines to calculate the angle clockwise angle from the red vector or the counter clockwise angle from the blue vector.

Clockwise angle from the red vector.  

Blue vector is opposite this angle.
     

Sin B      Sin A                              b Sin A
------- = ----------  =>  B = Sin -1 ( ------------ )
  b              a                                        a

   
                                             18.6 cm x Sin 57o 
Clockwise angle = Sin -1 ( --------------------------- ) = 45.7o 
                                                    21.8 cm

    
The resultant vector is 21.8 cm 45.7o clockwise from the red vector.

Since the clockwise and counter clockwise angles add up to 123.0o ,
the counter clockwise angle is 77.3o .

The resultant vector is 21.8 cm 77.3o counter clockwise from the blue vector.

    
   
2. 8.64 cm and 9.32 cm separated by 38.4o.
     
First draw the vectors.  

      
                                                                   Complete the parallelogram.

Angle = 180o - 38.4o  =  141.6o                  180o = Sum of adjacent angles
                                                                    
in a parallelogram

     

Use the Law of Cosines to find the magnitude of the resultant.

c2  =  a2  +  b2  - 2ab Cos C    =>    c = (a2  +  b2  -  2ab Cos C) 1/2  
   

resultant = ((8.64 cm)2 + (9.32 cm)2 - 2 x 8.64 cm x 9.32 cm x Cos 141.6o) 1/2 

resultant = 17.0 cm

      

Use the Law of Sines to calculate the angle clockwise angle from the red vector or the counter clockwise angle from the blue vector.

Clockwise angle from the red vector.  

Blue vector is opposite this angle.
     

Sin B      Sin A                              b Sin A
------- = ----------  =>  B = Sin -1 ( ------------ )
  b              a                                        a

   
                                             9.32 cm x Sin 141.6o 
Clockwise angle = Sin -1 ( ----------------------------- ) = 19.9o 
                                                    17.0 cm

    
The resultant vector is 17.0 cm 19.9o clockwise from the red vector.

Since the clockwise and counter clockwise angles add up to 38.4o ,
the counter clockwise angle is 17.4o .

The resultant vector is 17.0 cm 17.4o counter clockwise from the blue vector.

   
    
3. 5.93 cm at a heading of 75.0o, 3.17 cm at a heading of 125.0o, 8.68 cm at a heading of 218.0o, and 4.33 cm at a heading of 313.0o.
    
    

Use the Compass to determine the quadrant for each vector.

   

   

   

   

   

   

   

   

North = 5.93 cm x Cos 75.0o 
           = 1.53 cm

East = 5.93 cm x Sin 75o 
        =  5.73 cm
   

South = 3.17 cm x Cos 55.0o 
           = 1.82 cm

East = 3.17 cm x Sin 55.0o 
        = 2.60 cm
   

South = 8.68 cm x Cos 38.0o 
          = 6.84 cm

West = 8.68 cm x Sin 38.0o 
          = 5.34 cm
   

North = 4.33 cm x Cos 47.0o 
           = 2.95 cm

West = 4.33 cm x Sin 47.0o 
          = 3.17 cm

Draw each vector completing the rectangle for each vector.

(With practice, you can do the work by visualizing the drawings.)

Break each vector into components.  The components are the sides of the rectangle.

    
           opposite
Sin = ----------------
          hypotenuse 
   

opposite = hypotenuse x Sin

   

             adjacent
Cos = -----------------
            hypotenuse
   

adjacent = hypotenuse x Cos

 

South positive and North negative

East positive and West negative

   
North-South =  - 1.53 cm + 1.82 cm + 6.84 cm - 2.95= + 4.18 cm (South)

East-West = 5.73 cm + 2.60 cm - 5.34 cm - 3.17 cm = - 0.18 cm  (West)

     

For each dimension, assign a positive and negative.

    

Add the vectors in the same dimension.

Resultant = 
      ((4.18 cm)2 + (0.18 cm)2) 1/2 

Resultant = 4.18 cm

    
Angle between North and Vector

                           0.18 cm
Angle = Sin -1 ( ------------- )
                           4.18 cm

Angle = 2.5o  

  

Heading = 360.0o - 2.5o 

Heading = 357.5o  
   

Resultant = 4.18 cm at 2.5o 

Draw the two components and solve for the resultant vector using 

hypotenuse = (a2 + b2) 1/2  

   

Solve for one of the two angles and convert into a heading.

    

                             opposite
Angle = Sin -1 ( ----------------- )
                           hypotenuse

   
    
4. 6.89 cm at a heading of 115.0o, 5.11 cm at a heading of 31.0o, 4.22 cm at a heading of 314.0o, and 8.14 cm at a heading of 193.0o.
    
   

Use the Compass to determine the quadrant for each vector.

   

   

   

   

   

   

   

   
    

South = 6.89 cm x Sin 25.0o 
           = 2.91 cm

East = 6.89 cm x Cos 25.0o 
         = 6.24 cm
   

North = 5.11 cm x Cos 31.0o 
           = 4.38 cm

East = 5.11 cm x Sin 31.0o 
         = 2.63 cm
   

South = 4.22 cm x Sin 77.0o 
           = 4.11 cm

West = 4.22 cm x Cost 77.0o 
          = 0.95 cm
    

North = 8.19 cm x Sin 49.0o 
           = 6.18 cm

West = 8.19 cm x Cos 49.0o 
          = 5.37 cm

Draw each vector completing the rectangle for each vector.

(With practice, you can do the work by visualizing the drawings.)

Break each vector into components.  The components are the sides of the rectangle.

    
           opposite
Sin = ----------------
          hypotenuse 
   

opposite = hypotenuse x Sin

   

             adjacent
Cos = -----------------
            hypotenuse
   

adjacent = hypotenuse x Cos

         

North positive and South negative

East positive and West negative

   
North-South =  - 2.91 cm + 4.38 cm - 4.11 cm + 6.18 cm 
                      = + 3.54 cm (North)

East-West = 6.24 cm + 2.63 cm - 0.95 cm - 5.37 cm = + 2.55 cm  (East)

     

For each dimension, assign a positive and negative.

    

Add the vectors in the same dimension.

Resultant = 
      ((3.54 cm)2 + (2.55 cm)2) 1/2 

Resultant = 4.36 cm

    
Angle between North and Vector

                           2.55 cm
Angle = Sin -1 ( ------------- )
                           4.36 cm

Angle = 35.8o  

  

Heading = 0.0o + 35.8o 

Heading = 35.8o  
   

Resultant = 4.36 cm at 35.8o 

Draw the two components and solve for the resultant vector using 

hypotenuse = (a2 + b2) 1/2  

   

Solve for one of the two angles and convert into a heading.

    

                             opposite
Angle = Sin -1 ( ----------------- )
                           hypotenuse

Table of Contents