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An investigation of the commonly suggested rounding rule for addition and subtraction
is presented including its derivation from a basic assumption. Through theoretical study and
Monte-Carlo simulations, it is shown that this rule predicts the minimum number of significant
digits needed to preserve precision 100% of the time. Because the standard rounding rule for
these two fundamental operations is accurate and completely safe for data, there is no need to
extend this rule to keeping an additional significant figure as has suggested for multiplication
and division.

PACS. 01.30.Pp – Textbooks for undergraduates.
PACS. 01.55.+b – Genreal physics.

I. Introduction

Rules for propagation of significant figures are described in virtually every introductory
physics textbook. Over the years, college students of physics have come to rely on these “stan-
dard” rounding rules for the fundamental mathematical operations; i.e., addition, subtraction,
multiplication, and division. It is obvious that rounding, as part of the analysis, must never jeop-
ardize the real data whose experimental error must begin and end with the measuring apparatus.
In a recent note by Good [1], a simple division problem is discussed as an example to show
that the application of the standard rounding rule leads to a loss of precision in the result. It
points out, in a straightforward and stark manner, why the commonly suggested rounding rule
is wrong in itself and how its application can be potentially dangerous to data. The fact that
rounding rules can lead to such a loss of valuable information is due to their approximate nature
and has been well documented by Schwartz [2]. Due to the importance of rounding rules as
common and convenient (even if approximate) tools in data manipulation and error analysis [1,3],
Mulliss and Lee investigated the rounding rules for multiplication and division in great detail [4].
Through Monte-Carlo simulations, it was shown for the first time that the standard rounding rule
for multiplication and division fails to predict the minimum number of significant figures needed
to preserve precision approximately 50% of the time. Mulliss and Lee also explain, using their
formalism, why the standard rule fails and how it can fail. It was proven that there is no a priori
rule that always works for multiplication and division. An alternative rule suggested to be adopted
as the new standard is a rule which advocates the use of an additional figure over that required
by the standard rule [4].
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Since the publication of the above-mentioned paper in this Journal, the authors have re-
ceived many positive comments from the concerned educators and textbook authors in the physics
community. Indeed, it is because its great impact on science education in general that the American
Association of Physics Teachers lists under the on-line PSRC Resource Center: General Physics:
Significant Figures [5] the web site maintained by Mulliss [6].

In this paper, the theoretical basis for the standard rounding rule for the even more funda-
mental operations -addition and subtraction- is presented. The standard rounding rule, as applied
to the simple addition and subtraction problems x = y + z and x = y¡ z, is considered. Follow-
ing Mulliss and Lee [4], a statistical test is applied to quantify the accuracy of the standard rule.
Three categories are considered: those where the “true” uncertainty is as large or larger than that
predicted by the standard rule but of the same order of magnitude, those where the true uncertainty
is less than predicted, and those where the true uncertainty is an order of magnitude larger than
predicted. In the first case, the standard rule is said to ”work” because it predicts the minimum
number of significant digits that can be written down without losing precision, and therefore
valuable information, in the result. In the second and third cases the standard rule clearly ”fails”,
predicting fewer or more significant figures than are needed and, therefore, losing or overstating
precision.

II. Simple derivation of the standard rounding rule

A commonly suggested rounding rule for addition and subtraction [7] states: ”When numbers
are added or subtracted, the number of decimal places in the result should equal the smallest
number of decimal places of any term in the sum.” The standard rounding rule for the addition
and subtraction of two numbers can be inferred from one very simple assumption. According to
the concept of uncertainty, the absolute error in a number, written without any indication of its
real uncertainty, is taken to be §1=2 in the least significant decimal place [8]. As an illustration
of this relationship, Table I presents the number 815.24 written to 1, 2, 3, 4, and 5 significant
figures; also included are the corresponding uncertainty and “place” of the least significant digit.
Let the integer Px denote the place of the right most significant digit in a number x, such as
P (3:01) = ¡2, P (48) = 0, or P (620) = 1. One obtains the uncertainty in a number:

Uncertainty (x) = 0:5£ 10Px: (1)

For the derivation of the standard rounding rule for addition and subtraction, consider the
fundamental mathematical operations of two numbers, y § ¢y and z § ¢z. In the simplest
approximation for x = y + z or x = y¡ z, it is customary to take the maximum uncertainty to be
the one quoted, leading to

Uncertainty (x) = Uncertainty (y) + Uncertainty (z): (2)

Substituting the relationship Eq. (1) into Eq. (2) gives

10P x = 10Py + 10Pz; (3)

or

Px = P + log(1 + 10P 0¡P ); (4)
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TABLE I. An illustration of the relationship between the place of the right most significant digit
and the uncertainty of a quantity.

Number Place of the least significant digit Uncertainty

800 2 § 50
820 1 § 5
815 0 § 0.5
815.2 ¡1 § 0.05
815.24 ¡2 § 0.005

where P = max(Py;Pz) and P 0 = min(Py;Pz).
At this point in the derivation, two separate cases must be considered: the case where y

and z do not have the same place of the least significant digit and the case where they do.

Case 1 (Py 6= Pz) When Py does not equal Pz, they must be different by at least 1. Even when
they differ by this minimum amount, the term in the logarithm in Eq. (4) involving both P 0 and
P is 1/10 of unity. Hence one is justified in replacing Eq. (4) by

Px = P + log(1) = P; (5)

implying that Px = max(Py;Pz). This is, clearly, a statement of the standard rounding rule.

Case 2 (Py = Pz) When Py equals Pz, both terms in the logarithm in Eq. (4) become equally
dominant. Under this condition, Eq. (4) reduces to

Px = P + log (2); (6)

where P = Py = Pz. One can see that the integer Px = Nint [P + log (2)], where Nint (w)
is defined to be the closest integer to the number w. Because log (2) is smaller than 0.5, it can
never cause Px to be rounded up to P + 1. Thus Px = P = max(Py;Pz), which is, again,
consistent with the standard rounding rule.

When measured quantities are added or subtracted, the uncertainties add. It is worth
mentioning that if the original uncertainties are independent and random, a more realistic estimate
of the resulting uncertainty is given by the quadratic sum, which is never larger than their ordinary
sum [9]. In other words, Eq. (2) is now rewritten as

(Uncertainty (x))2 = (Uncertainty (y))2 + (Uncertainty (z))2: (7)

Under these conditions, Eq. (4) becomes

Px = P + (1=2) log[1 + 102(P 0¡P )]; (8)
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and it can easily be proven that the standard rounding rule for the simple addition or subtraction
problem of two numbers is still well justified.

III. A statistical study of the standard rule

To investigate the statistical properties of the standard rounding rule, a Monte-Carlo pro-
cedure was used. A computer code was written in FORTRAN77 and run on a PentiumII350 PC
equipped with a Microsoft Fortran PowerStation compiler (Version 4.0). The code uses a random
number generator based upon Ran2 [10] to create two numbers. Each of these numbers has a
randomly determined number of significant figures ranging from 1 to 5 and a randomly determined
number of places to the left of the decimal point ranging from 0 to 5. Each digit in these numbers
is randomly assigned a value from 0 to 9, except for the leading digit that is randomly assigned a
value from 1 to 9. Each resulting number can range from the smallest and least precise value of
0.1 to the largest and most precise value 99999. The program calculates the sum or difference of
the two generated numbers and determines the number of significant figures, which should be kept
according to the standard rule. It then uses Eqs. (1) and (2) (or Eqs. (1) and (7)) to compute the
“true” uncertainty from the two original uncertainties. The uncertainty in the sum or difference,
as predicted by the standard rule, is taken to be §1=2 in the least significant decimal place [8].
The true uncertainty and the value predicted by the standard rule are compared and the addition
or subtraction problem is counted as one of the three cases described previously. The program
repeats the calculation for one million additions or subtractions and computes statistics.

IV. Results and discussion

Unlike for the case of multiplication and division, where the application of the standard
rule works only 46.4% of the time [4], the statistics in this study shows that the standard rounding
rule for addition and subtraction will neither overstate precision nor cause a loss of valuable
information. The rule simply works perfectly. A careful check of the formalism given by Eq. (4)
or (8) conveys that these results are not unexpected at all. Notice that the integer (P 0 ¡ P ) is
either zero or negative, indicating that the sum at the right hand side of the equation is greater
than P but not beyond P + log (2). The fact that Px is “substantially” greater than P (in a
minute amount) suggests that the standard rule preserves precision well. Likewise, the fact that it
can never cause Px to be rounded up to P + 1 implies that the standard rule never predicts more
significant figures than are needed, indicating that the standard rule never overstates precision.
Consequently, the standard rule for addition and subtraction of two numbers is never “wrong”.

Now consider a series of additions and subtractions. One can show mathematically that the
standard rule always works as long as there are nine numbers or less in the series and it may not
fail for a series consisting more than ten numbers. For ten numbers in a series (or 100 numbers
in a series if all of the associated uncertainties are independent and random), the extreme case
takes place as they all have the same place of the least significant digit, causing the standard rule
to overstate precision. Of course, in a series of additions and ubtractions, the longer the series,
the more likely one is to need less significant figures to adequately represent the results because
the errors of §1=2 in the last decimal place add up. It is true that the standard rule may fail for
a long series of additions and subtractions, however, it is a large enough number to ensure the
validity of the rule in most practical situations. Because the standard rounding rule for addition
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and subtraction never leads to a loss of precision no matter how long a series is, it is always safe
for data.

The fact that the standard rounding rule for addition must preserve precision should be able
to imply the major finding from the Mulliss and Lee paper, which reveals the fact that the alternate
rounding rule for multiplication must preserve precision [4]. To relate an addition problem to a
multiplication problem, consider an addition problem involving the sum of n identical numbers
y, where n is a precise positive integer. Assume that y and thus the sum x are positive. One can
see that Px = Rint(log x)¡Nx, where Rint (w) denotes the smallest integer that is greater than
the number w and the notation Nx stands for the number of significant figures in x. With this
key relationship, some algebraic procedures similar to those appearing in Section II lead to the
result Nx = [Rint (log x) ¡ Rint (log y)] + Ny ¡ log n. Consider the special case where n = 2;
i.e., x = y + y. The result becomes Ny ¡ log (2) · Nx · Ny + 1 ¡ log (2), implying that
the positive integer Nx = Ny + 1 must preserve precision for multiplication, which is the major
point of the alternate rounding rule for multiplication and division. For the case where 10 identical
terms are summed up, one can obtain Nx = Ny. Recall that it is a case where the standard rule
for addition predicts an extra significant digit in the final result. The equality represents that the
application to this case of the alternate rule for multiplication falls into the category of “1 digit
too many”. Therefore, the standard rounding rule for addition and the alternate rounding rule for
multiplication form a self-consistent set of rounding rules that serve to preserve precision.

IV. Conclusions

Many problems encountered by physics students in daily life, including those in textbooks,
do not deal with quantities where the uncertainties are explicitly stated. In these cases, the number
of significant figures is the only available information upon which to base an error estimate. One
could of course calculate percentage error at every step. The reason one cannot just abandon
all rounding procedures is to avoid grossly overstating the precision every time an elementary
calculation is painstakingly done. A satisfactory rounding rule provides the easiest way to protect
against the loss of valuable information, pending the more careful determination of experimental
error that should accompany the final result.

The previous work by Mulliss and Lee [4] proves that there is no a priori rounding rule
for multiplication and division that can accurately predict the number of significant digits in all
cases. It is also shown that the alternate rule, advocating the use of an extra significant figure,
is far superior to the standard rounding rule. While the standard rounding rule for multiplication
and division leads to a loss of precision over 50% of the time, the current work does indicate that
the standard rounding rule for addition and subtraction is completely satisfactory in this regard.

Preserving precision under addition must preserve precision under multiplication because
multiplication is directly related to addition. In the case where the tightest constraints on Nx
exist, the standard rule for addition implies that, for multiplication, Nx = Ny + 1 guaranties
that precision. Thus the use of the standard rule for addition points towards the alternate rule for
multiplication as the correct rule that preserves precision.

This paper and the previous one together provide important new insights into the standard
rounding rules for the fundamental, mathematical operations and, thus, have implications for the
way that the rules should be taught to science students. The following steps are suggested:
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Step 1) Correct statements that are factually incorrect. Avoid any misleading statements such as:
“In multiplication and division, the product or quotient can not have more significant digits
than the minimum number of significant digits used in the calculation.”

Step 2) Emphasize that rounding rules are simply conventions. Rounding rules provide a conve-
nient way to handle the propagation of errors when dealing with numbers that do not have
explicitly stated uncertainties. It may be obvious to teachers that these rules are only approx-
imate, but many students interpret a “rule” to mean “something that always works”. These
rounding conventions are called “rules” only because they provide a set of instructions.

Step 3) Decide which rounding rule to teach; the standard or the alternate rule. For multiplication
and division, the standard rule is less accurate and allows valuable information to be dis-
carded over half of the time. The alternate rule is more accurate and perfectly safe, but
can overstate precision by having one or, on very rare occasions, two unneeded digits. For
addition and subtraction, the standard rounding rule works well. The chance is slim for the
rule to overstate precision; the best part is that it is always safe for data.

Step 4) Tell students what can happen and what to expect when they use the rounding rule. There
is no a priori rule for multiplication and division because the proper number of significant
figures depends critically on the result of the calculation. The application of the standard
rule for multiplication and division can yield only three possible results. On very rare
occasions it predicts one digit too many, overstating the precision. Most of the time it
predicts one digit too few, causing valuable information to be lost. The application of the
alternate rule for multiplication and division can also yield three possible results. It predicts
one digit too many less than half of the time; on very rare occasions it can predict two
digits too many, overstating the precision. However, it is always safe for data. As for the
standard rule for addition and subtraction, it is always safe for data and the application of
this rule can overstate precision only when dealing with a very long series of operations.
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