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A detailed investigation of three different rounding rules for multiplication and division
is presented, including statistical analyses via Monte-Carlo simulations as well as a math-
ematical derivation. This work expands upon a previous study by Mulliss and Lee (1998),
by making the more realistic assumption that the contributing uncertainties are statistically
independent. With this assumption, it is shown that the so-called standard rounding rule
fails over 60% of the time, leading to a loss in precision. Two alternative rules are studied,
and both are found to be significantly more accurate than the standard rule. One alterna-
tive rule requires one extra significant digit beyond that predicted by the standard rule. The
other requires one to count numbers whose leading digit is 5 or greater as having an extra
significant digit, and then to apply the standard rule. Although the second alternative rule
is slightly more accurate, the first is shown to be completely safe for data — never leading
to a truncation of digits that contain significant information. Accordingly, we recommend
the first alternative rule as the new standard.

PACS numbers: 01.30.Pp, 01.55.+b, 02.70.Uu

I. INTRODUCTION

Over the years, college physics students and teachers have come to rely on a standard
rounding rule, which states that the proper number of significant figures in the result of
multiplication or division is the same as the smallest number of significant figures in any
of the numbers used in the calculation. However, Good, in 1996, used a simple division
problem to sound an alarm that the application of this standard rounding rule could bring
about a serious loss of precision in the result [1]. What is even more disturbing is the long list
of popular physics textbooks at the first-year university level which advocate the standard
rounding rule, without warning their readers that data could be jeopardized due to the
possibility of losing valuable information. The fact that rounding rules can give rise to such
a loss is attributed to their approximate nature and has been well documented by Schwartz
[2]. Some researchers feel that the approximate nature of significant figures and rounding
rules precludes the need for a detailed investigation of their effects on error propagation
[3]. Others, including the authors, however, recognize the importance of rounding rules
as common and convenient (even if approximate) tools in error analysis [1, 4], especially
for students of introductory physics and chemistry. The theoretical basis and a statistical
analysis of the standard rounding rule were presented in our previous publication [5], in
which we also proposed an equally simple but more accurate alternative rule (ML rule for
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short), requiring one extra significant figure than predicted by the standard rounding rule.
Recently, our team has been informed that there is another rounding rule for mul-

tiplication/division that has been taught in some Portuguese schools since approximately
1930 [6]. Unlike the ML rule, this rule (CLM rule for short) requires one to count numbers
whose leading digit is 5 or greater as having an extra significant digit and then to apply the
standard rule. In this work, we investigate the CLM rule and provide a statistical analysis
as well as the mathematical basis for this rule. As was categorized in our previous work
[5], the statistical results fall into three cases: those where the true uncertainty is as large
or larger than that predicted by the rule but of the same order of magnitude, those where
the true uncertainty is less than predicted and those where the true uncertainty is an order
of magnitude larger than predicted. The rule is said to “work” in the first case because it
predicts the minimum number of significant digits that can be written down without losing
precision and hence valuable information in the result. In the second and third cases, the
rule apparently “fails”, predicting fewer or more significant figures than are needed and,
accordingly, losing or overstating the precision.

To properly compare these three rounding rules, similar statistical tests are repro-
duced for the standard rule and the ML rule. This study indicates that the standard
rounding rule is inferior to both the alternative rules, of which the CLM rule has the high-
est accuracy (66%). The ML rule, although slightly less accurate than the other alternate
rule, never leads to the truncation of digits that contain useful information. This assures
the ML rule a place in calculations where the complete safety for data is strictly required.

II. SIMPLE MATHEMATICAL DERIVATION FOR ROUNDING RULES

The rounding rules for the multiplication/division of two numbers can be inferred
from one very simple assumption, which states that the precision (percentage error) of a
number is approximately related to the number of significant figures in that number [7]. The
fundamental principles that lead to this derivation were discussed in earlier literature, but
not explicitly developed in a rigorous mathematical manner [8]. Written in mathematical
form, this assumption expresses the precision in a number x with Nx significant figures in
the form:

Precision(x) ' 10(2−Nx)% . (1)

Following Bevington and Robinson [9], the absolute error in this number is taken to ±1/2
in the least significant decimal place. However, Eq. (1) is only an approximate relationship.
In reality, it is modified to [5]

Precision(x) = Cx × 10(2−Nx)% , (2)

where Cx is a constant that can range from approximately 0.5 to exactly 5, depending on
the actual value of the number x. Table I displays the relationship.

To obtain a formula that determines the number of significant figures in a product
or ratio, consider the simple division problem x = y/z. Through differentiation, it is
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TABLE I: Examples illustrating Eq. (2).

Number of

Number x Precision(%) significant figures Value of Cx

Nx

6 0.83 × 101 1 0.83

72 0.69 × 100 2 0.69

64.4 0.78 × 10−1 3 0.78

92.37 0.54 × 10−2 4 0.54

customary to use the following relation in the simplest approximation [5]

max(dx/x) = abs(dy/y) + abs(dz/z) , (3)

or

Precision(x) = Precision(y) + Precision(z) . (4)

The relation given in Eq. (4) is strictly valid only when the uncertainties in y and z are
perfectly correlated. For most real-world problems, this occurs very seldom and the above
relation places an upper limit on the uncertainty in the result x. In the previous investiga-
tion of rounding rules for multiplication and division, the authors used the above relation
[5]. A more appropriate assumption for most real-world problems is that the uncertainties
in y and z are statistically independent. This more realistic assumption takes into account
the concepts of variance/covariance and leads to the following error-propagation equation
[9]:

(Precision(x))2 = (Precision(y))2 + (Precision(z))2 . (5)

Assuming that N = min(Ny, Nz) and N ′ = max(Ny, Nz), the substitution of Eq. (2)
into Eq. (5) yields the following expression of Nx:

Nx = N +

[

log (Cx) − 1

2
log

[

C2 + C ′2 × 10−2(N ′
−N)

]

]

, (6)

where C and C ′ correspond to N and N ′, respectively. This is the formula allowing one to
determine the number of significant figures of a product or ratio.

III. A STATISTICAL STUDY OF THE THREE DIFFERENT ROUNDING RULES

III-1. The method

To investigate the statistical properties of the three rounding rules, a Monte-Carlo
procedure was used. A computer code was written in Fortran 90 and run on a Pentium(R) 4
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TABLE II: The statistical results of the application of the standard rounding rule to simple mul-
tiplication and division problems. The statistical likelihood that the application of the standard
rounding rule will fall into each of the three categories described in the text is shown.

Category Multiplication Division Average

1 more digit needed 68.8% 54.4% 61.6%

Worked 31.0% 45.3% 38.2%

1 digit too many 0.2% 0.3% 0.2%

PC equipped with a Microsoft Fortran PowerStation compiler (Version 4.0). The code uses
a random number generator based upon Ran2 [10] to create two numbers. Each of these
numbers has a randomly determined number of significant figures ranging from 1 to 5 and a
randomly determined number of places to the left of the decimal point ranging from 0 to 5.
Each digit in these numbers is randomly assigned a value from 0 to 9, except for the leading
digit which is randomly assigned a value from 1 to 9. Each resulting number can range
from the smallest and least precise value of 0.1 to the largest and most precise value, 99999.
The program calculates the product or ratio of the two generated numbers and determines
the number of significant figures which should be kept according to each of the three rules.
It then uses Eqs. (2) and (5) to compute the “true” precision of the product/ratio and
converts it into a true absolute error. The absolute error in the product/ratio predicted
by each rule is taken to ±1/2 in the least significant decimal place. The true absolute
error and the value predicted by each rule are compared, and the multiplication or division
problem is counted as one of the three cases described previously. The program repeats the
calculation for one million multiplication or division problems and computes statistics.

III-2. The standard rounding rule

Table II shows the results for the standard rounding rule as applied to simple multipli-
cation and division problems. As can be noted, the result differs from that in our previous
work [5]. One reason might be that the simulations were run on different computer hard-
ware systems using different software codes. The primary reason is due to the fact that
our current statistical analysis assumes that uncertainties are statistically independent and
uses Eq. (5), while the previous work assumed that uncertainties are perfectly correlated
and used Eq. (4). We see that the current statistical analysis estimates a lower accuracy
for the standard rule than was estimated in our previous work. This is exactly what is
intuitively expected since the assumption of statically independent uncertainties generally
results in a smaller predicted uncertainty in the result. This smaller uncertainty, in turn,
makes it more likely that the standard rule will predict too few significant figures in the
result.

To see the mathematical background of the standard rounding rule, let us substitute
the approximate relationship Eq. (1) into Eq. (5); we then have

10−2Nx = 10−2Ny + 10−2Nz . (7)

If Ny 6= Nz, and we assume Ny < Nz, then the 10−2Ny term is at least 100 times larger than
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TABLE III: The statistical results of the application of the ML rule to simple multiplication and
division problems.

Category Multiplication Division Average

More digits needed 0 0 0

Worked 68.8% 54.7% 61.8%

Too many digits 31.2% 45.3% 38.2%

the 10−2Nz term and thus completely dominates. We find that Nx = Ny = min(Ny, Nz),
which is a statement of the standard rounding rule. As for the case in which Ny = Nz, we
can conclude that Nx = NINT[Ny−log (

√
2)] = Ny = min(Ny, Nz) , where NINT(w) denotes

the integer that is nearest to the number w. In both cases (and in general, therefore) we
obtain a statement of the standard rounding rule. Obviously, the reason why the standard
rounding rule fails is that it is an approximation, in which we neglect the contribution of
the leading constant Cx to the precision.

III-3. The ML rule

Complex as Eq. (6) may be, some useful properties can still be extracted. By studying
the bracketed term in Eq. (6), one can show that the number of significant figures predicted
by the standard rounding rule can never be more than one digit away from the correct value
[5]. The only possible values for Nx are N−1, N , or N+1. Thus, the standard rounding rule
is never “wrong” by more than one significant digit. Based upon this reason the ML rule,
which requires one to use an extra significant digit above that suggested by the standard
rule, has been proposed. The statistical results are shown in Table III. Again, the result
differs slightly from that in our previous work, owing to the reasons mentioned already.

It should be pointed out that the most significant aspect of the ML rule is that it
never leads to a loss of precision. The reason for this arises from the fact that the standard
rounding rule can, at its worst, predict only one less significant digit than actually needed.
The “extra” significant digit that the ML rule provides comes to the rescue. The ML rule is
not only more accurate than the standard rounding rule, it is also completely safe for data.
The only drawback with the ML rule is that the results of calculations may have one or,
in rare cases, two too many significant digits. This disadvantage is minor when compared
with the standard rounding rule.

III-4. The CLM rule

Apart from the two rounding rules mentioned above, there is also a third rounding
rule (the CLM rule) that has been taught in some Portuguese schools at least since 1930
[6]. This rule requires one to count numbers whose leading digit is 5 or greater as having an
extra significant significant digit and then to apply the standard rule. Although this rule
can be stated very simply, it is more complicated than the other two rules, because there
are the following two distinct cases that must be considered:
(a) When the numbers have the same number of significant digits: add an extra digit to
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TABLE IV: Some particular values of Cx.

ax Cx ax Cx

1 5 6 0.83

2 2.5 7 0.71

3 1.66 8 0.63

4 1.25 9 0.56

5 1 < 10 > 0.5

the answer if both numbers have a leading digit of 5 or greater. (b) When the numbers
do not have the same number of significant digits: add one extra digit to the answer if the
number with the fewer significant figures has a leading digit of 5 or greater.

The CLM rule deals with the value of the leading digit. In order to understand the
mathematical basis of the CLM rule, one must relate the number of significant digits in the
result to the value of the leading digits. Let us express a number x in scientific notation as
x = ax × 10n, where 1.0 ≤ ax < 10.0 and n is an integer. Then it can easily be shown that
the leading constant Cx in precision is related to ax by the following equation:

Cx = 5/ax . (8)

One can clearly see that Cx ranges from 0.5 to exactly 5, depending on the actual value of
the number x (i.e., the actual numerical value of ax). To the first order, ax can be replaced
by the value of the leading digit for the purposes of computing Cx. Table IV gives some
particular values of ax and the corresponding values of Cx.

An understanding of the mathematical basis of the CLM rule can now be obtained
from a close examination of Eq. (6). Assuming that N ′ > N and ignoring the small
contribution from C ′

2 × 10−2(N ′
−N), the substitution of Eq. (8) into Eq. (6) results in the

following approximate relationship:

Nx = N + log (a/ax) , (N ′ > N) . (9)

Assuming that N ′ = N results in the following relationship:

Nx = N + log (a/ax) − (1/2) log [1.0 + (a/a′)2] , (N ′ = N) . (10)

In Eqs. (9) and (10), a is (to first order) the leading digit of the number with fewer significant
figures, ax is (to first order) the leading digit of the result, and a′ is (to first order) the
leading digit of the number with more significant figures.

In the case where N ′ > N , Eq. (9) clearly shows that the proper number of significant
figures in the result, Nx, is more likely to be N + 1 than N , when the leading digit of the
number with fewer significant figures, a, is large. Considering the possible values of ax, the
smallest value of a that can cause Eq. (9) to be rounded up to Nx = N + 1 is a = 4. The
value of a = 5 is the smallest value at which it is equally likely (averaged over the possible
values of ax) that the log (a/ax) term will cause Nx to be greater than N . Values of a
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TABLE V: Contribution of the leading digit a to the number of significant figures in the result, Nx.

Value of a Possible values of log (a/ax)

(to first order) Minimum Average Maximum

1 −0.954 −0.699 +0.000

2 −0.653 −0.398 +0.301

3 −0.477 −0.222 +0.477

4 −0.352 −0.097 +0.602

5 −0.255 +0.000 +0.699

6 −0.176 +0.080 +0.778

7 −0.109 +0.146 +0.845

8 −0.051 +0.204 +0.903

9 +0.000 +0.255 +0.954

TABLE VI: The statistical results of the application of the CLM rule to simple multiplication and
division problems.

Category Multiplication Division Average

1 more digit needed 26.97% 16.95% 22.0%

Worked 62.02% 68.99% 65.5%

1digit too many 11.01% 14.06% 12.5%

greater than 5 begin to favor Nx = N + 1 over Nx = N more strongly; see Table V. There
is obviously a strong element of truth to the CLM rule for the case where N ′ > N , and it
can be anticipated that the CLM rule will be more accurate than the standard rounding
rule for this case.

The N ′=N case is complicated by an additional negative term, i.e.,
−(1/2) log [1.0 + (a/a′)2], that appears in Eq. (10). This term makes it less likely, in gen-
eral, that an additional significant figure will be needed in the result for the N ′ = N case
than for the N ′ > N case. This additional term is always negative, and it becomes more
negative with increasing values of a. The rate of increase of the log(a/ax) term with increas-
ing values of a (averaged over all possible values of ax) is faster than the rate of decrease
of the −(1/2) log [1.0 + (a/a′)2] term with increasing values of a (averaged over all possible
values of a′). Thus, there is still an overall trend that makes the number of significant
figures in the result, Nx, more likely to be N + 1 than N when the leading digit of a is
large, although this trend is not as strong as it is for the N ′ > N case. We can see from
Eq. (10) that the effects of this additional negative term are minimized when the value of
a′ is large (e.g. 5 or greater). An investigation of Eq. (10) found that both a and a′ were
required to be 5 or greater before the range of possible values for Nx favored values greater
than N . The above analysis shows that there is also an element of truth to the CLM rule
for the case where N ′ = N .

Table VI shows the statistical results. This third rule works better for division than
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the other two rounding rules mentioned above. Although the CLM rule is the most accurate
of the three rules examined (it is only slightly more accurate than the ML rule), its use
has a significant chance of causing damage to data. As anticipated from the mathematical
analysis of the CLM rule, the accuracy for the N ′ > N case (which was computed separately
but not shown separately in Table VI) was significantly better than the accuracy for the
N ′ = N case.

The detailed mathematical investigation of the CLM rule, presented here for the first
time to our knowledge, led to an expression for the number of significant figures in the result,
Nx, in terms of the values of the leading digits. This reformulation, in turn, provides the
key for explaining why multiplication and division have different levels of accuracy for the
CLM rounding rule. This is due to the fact that the multiplication and division of random
numbers create different frequency distributions of ax, the leading digit in the result. When
a constraint (e.g. a ≥ 5 or a < 5) is imposed on the numbers used in the calculation, there
is a change (different for multiplication and division) in the frequency distribution of ax. In
short, the leading digits a and ax in Eqs. (9) and (10) are not independent of each other.
There is a statistical relationship between them that is different for multiplication and
division, and that depends upon the constraints imposed on a. Readers who are interested
in a detailed discussion explaining the above-mentioned general behavior can refer to the
Appendix.

IV. SUMMARY

The best expression for the result of a calculation should include a precise description
of the uncertainty in terms of the absolute or percentage error. This is, in reality, often only
possible for experimental data. In most situations, the problems encountered by physics
students in daily life, including those in textbooks, do not deal with quantities where the
uncertainties are explicitly stated. When this is the case, the number of significant figures
is the only available information upon which to base an error estimate and a rounding rule
becomes more meaningful.

It is not convenient to use Eq. (5) to calculate the precision of a product or ratio
whenever one is doing a multiplication or division problem; as a result there arises the
need for a simple and quick way to determine the number of significant figures in simple
mathematical operations. This is why a rounding rule is desired. The standard rounding
rule is conservative, because it tries to ensure that the true result of a calculation is included
within the error bars implied by the number of significant digits to which that result is
written. However it is too conservative, so that it causes a loss of precision over 60% of the
time. Consequently, an equally simple but more accurate rounding rule has been called for
[1]. There being no a priori rule two alternative rules are proposed, and both are shown to
be far superior to the standard rule. The first alternate rule, the ML rule, is shown to work
62% of the time while the second alterative rule, the CLM rule, works 66% of the time. It
is worth noting that the ML rule, although less accurate than the CLM rule, never leads
to a loss in the information carried by the digits. Concentrating on accuracy alone, the
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CLM rule is recommended strongly over the standard rule and slightly over the ML rule.
Considering the preservation of information alone, the ML rule is clearly preferred. Seeing
that the ML rule is not only accurate but also completely safe for data, we suggest adopting
the ML rule as the new standard for general purposes. One should, however, decide which
rule to use depending on one’s own purpose and situation.
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APPENDIX: WHY MULTIPLICATION AND DIVISION HAVE DIFFERENT LEV-

ELS OF ACCURACY FOR THE CLM ROUNDING RULE

The statistical results for the CLM rounding rule, as revealed in Table VI, show a
significantly distinct level of accuracy for multiplication and division. The detailed mathe-
matical investigation of the CLM rule presented in this study led to an expression for the
number of significant figures in the result in terms of the values of the leading digits. This
reformulation, in turn, provides the key to explaining the mystery of why the CLM rule
works better for division than for multiplication.

Eqs. (9) and (10) involve the leading digits of the numbers used in the calculation,
a and a′, and the leading digit of the result, ax. Throughout this paper (e.g. Table V), it
has been assumed that the value of ax is statistically independent of the values of a and
a′. The design of the Monte-Carlo simulation used in this paper ensures that a and a′

are uniformly random. This assumption of independence would require that the value of
ax is also uniformly random. However we know this assumption is realistically incorrect
for multiplication, because of the empirical observation (called Benford’s Law) that the
multiplication of (many) random numbers produces a result whose leading digit (d) is
much more likely to be a small number ( 30% chance that d = 1) than a large number ( 5%
chance that d = 9).

In order to determine if different frequency distributions of ax exist for multiplication
and division and how these distributions change when constraints (e.g. a < 5 or a ≥ 5) are
imposed, the following test was conducted. The values of y and z were allowed to range
from 1 to 99. It was assumed that N ′ > N and that y had the fewer number of significant
digits (and therefore corresponded to a). For each combination of y and z, the following
operations were performed and the leading digit of the result (ax) recorded:
1. x = y · z
2. x = y/z (number with fewer significant figures in numerator)
3. x = z/y (number with fewer significant figures in denominator)
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TABLE VII: The frequency distribution of ax for multiplication.

Digit frequency (%) for multiplication (x = y · z)

Value of ax 1 ≤ a ≤ 9 a < 5 a ≥ 5

1 24.0% 34.6% 15.5%

2 18.3% 21.8% 15.6%

3 14.5% 13.3% 15.6%

4 11.8% 7.0% 15.7%

5 9.4% 4.5% 13.4%

6 7.7% 4.7% 10.1%

7 6.1% 4.7% 7.1%

8 5.6% 4.7% 4.6%

9 3.5% 4.8% 2.5%

TABLE VIII: The frequency distribution of ax for division, where the number with fewer significant
figures is in the numerator.

Digit frequency (%) for division (x = y/z)

Value of ax 1 ≤ a ≤ 9 a < 5 a ≥ 5

1 33.6% 23.6% 41.5%

2 14.9% 16.3% 13.8%

3 10.2% 14.2% 6.9%

4 8.3% 13.4% 4.1%

5 7.5% 11.2% 4.6%

6 6.9% 7.8% 6.2%

7 6.5% 5.7% 7.1%

8 6.4% 4.5% 8.0%

9 5.7% 3.2% 7.8%

For each of the operations listed above, the frequency distribution of ax was computed
under the following conditions:
A. 1 ≤ a ≤ 9 (no constraints on a, included for comparison),
B. a < 5 (appropriate for the CLM rule),
C. a ≥ 5 (appropriate for the CLM rule).

The resulting frequency distributions of ax are presented in Tables VII, VIII, and IX.
It is very clear from Tables VII and VIII that the frequency distributions of ax are sub-
stantially different for multiplication and division (with no constraints on a). It is also very
clear from Tables VII, VIII, and IX that the frequency distributions of ax change dramati-
cally under constraints (e.g. a < 5 or a ≥ 5), and that this change is apparently different
for multiplication and division. These facts point to the different statistical relationships
between ax and a as a possible explanation for the distinct levels of accuracy in the CLM
rounding rule.
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TABLE IX: The frequency distribution of ax for division, where the number with fewer significant
figures is in the denominator.

Digit frequency (%) for division (x = y/z)

Value of ax 1 ≤ a ≤ 9 a < 5 a ≥ 5

1 33.6% 32.3% 34.6%

2 14.9% 23.3% 8.2%

3 10.2% 12.6% 8.2%

4 8.3% 8.5% 8.0%

5 7.5% 6.4% 8.4%

6 6.9% 5.3% 8.3%

7 6.5% 4.4% 8.2%

8 6.4% 4.1% 8.3%

9 5.7% 3.2% 7.7%

An examination of Eq. (9), Nx = N + log (a/ax), confirms that the dissimilar sta-
tistical relationships between ax and a for multiplication and division explain the distinct
levels of accuracy observed for the CLM rounding rule. According to Eq. (9), large values
of a and/or small values of ax are in favor of Nx to be equal to N + 1. Similarly, small
values of a and/or large values of ax tend to cause Nx = N . The fact that division is more
accurate than multiplication for the CLM rounding rule can now be examined.

For multiplication, when a is larger (a ≥ 5), the value of ax is weighted towards
higher values. These two effects work against each other, making it somewhat less likely
that Nx = N + 1 is the proper answer (as predicted by the CLM rule). This increase
towards higher values of ax for a ≥ 5 does not happen for division; this is the reason why
the CLM rule is significantly less accurate for multiplication.

For division, there are two operations to consider. One is when the number with the
fewest significant figures is in the numerator, and the other when it is the denominator.
In the first operation, the value of ax is weighted dramatically towards the lowest possible

value (ax = 1) when a is larger (a ≥ 5). These two effects work together to make it much
more likely that Nx = N + 1 (as predicted by the CLM rule). In the second operation, the
distribution of ax values remains more or less unchanged when a is larger (a ≥ 5). There is
a slightly higher probability that ax = 1, but the probability distribution for other values
flattens out. With no substantial change in the distribution of the ax values, a larger value
of a (a ≥ 5) makes it more likely that Nx = N + 1 is the proper answer (as predicted by
the CLM rule).

In general, there is a statistical relationship between the value of a and the distribution
of the ax values. When a constraint (e.g. a ≥ 5 or a < 5) is imposed on the numbers used in
the calculation, there is a change (different for multiplication and division) in the frequency
distribution of ax. In short, the leading digits a and ax in Eq. (9) are not independent of each
other. There is a statistical relationship between them that is different for multiplication
and division, and it depends on the constraints imposed on a. Fundamentally, this explains
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why the CLM rule works better for division than it does for multiplication.
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