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The Euler and Navier–Stokes equations describe the motion of a fluid in Rn(n = 2 or 3).

These equations are to be solved for an unknown velocity vector u(x, t) = (ui(x, t))1�i�n ∈ Rn

and pressure p(x, t) ∈ R, defined for position x ∈ Rn and time t � 0. We restrict attention here

to incompressible fluids filling all of Rn. The Navier–Stokes equations are then given by

∂

∂t
ui +

n∑
j=1

uj
∂ui
∂xj

= ν∆ui −
∂p

∂xi
+ fi(x, t) (x ∈ Rn, t � 0) (1)

div u =

n∑
i=1

∂ui
∂xi

= 0 (x ∈ Rn, t � 0) (2)

with initial conditions

u(x, 0) = u◦(x) (x ∈ Rn) . (3)

Here, u◦(x) is a given, C∞ divergence–free vector field on Rn, fi(x, t) are the components of

a given, externally applied force (e.g. gravity), ν is a positive coefficient (the viscosity), and

∆ =
n∑
i=1

∂2

∂x2i
is the Laplacian in the space variables. The Euler equations are equations (1), (2),

(3) with ν set equal to zero.

Equation (1) is just Newton’s law f = ma for a fluid element subject to the external force

f = (fi(x, t))1�i�n and to the forces arising from pressure and friction. Equation (2) just says

that the fluid is incompressible. For physically reasonable solutions, we want to make sure

u(x, t) does now grow large as |x| → ∞. Hence, we will restrict attention to forces f and initial

conditions u◦ that satisfy

∣∣∂αx u◦(x)∣∣ � CαK(1 + |x|)−K on R
3, for any α and K (4)

and ∣∣∂αx ∂mt f(x, t)∣∣ � CαmK(1 + |x|+ t)−K on R
3 × [0,∞), for any α,m,K . (5)
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We accept a solution of (1), (2), (3) as physically reasonable only if it satisfies

p, u ∈ C∞(Rn × [0,∞)) (6)

and ∫
Rn

|u(x, t)|2dx < C for all t � 0 (bounded energy) . (7)

Alternatively, to rule out problems at infinity, we may look for spatially periodic solutions of

(1), (2), (3). Thus, we assume that u◦(x), f(x, t) satisfy

u◦(x+ ej) = u
◦(x), f(x+ ej , t) = f(x, t) for 1 � j � n (8)

(ej = j
th unit vector in Rn).

In place of (4) and (5), we assume that u◦ is smooth, and that

∣∣∂αx ∂mt f(x, t)∣∣ � CαmK(1 + |t|)−K on R
3 × [0,∞), for any α,m,K . (9)

We then accept a solution of (1), (2), (3) as physically reasonable if it satisfies

u(x, t) = u(x+ ej , t) on R3 × [0,∞) for 1 � j � n (10)

and

p, u ∈ C∞(Rn × [0,∞)) . (11)

A fundamental problem in analysis is to decide whether such smooth, physically reasonable

solutions exist for the Navier–Stokes equations. To give reasonable leeway to solvers while

retaining the heart of the problem, we ask for a proof of one of the following four statements.

(A) Existence and smoothness of Navier–Stokes solutions on R3. Take ν > 0 and

n = 3. Let u◦(x) be any smooth, divergence–free vector field satisfying (4). Take f(x, t) to be

identically zero. Then there exist smooth functions p(x, t), ui(x, t) on R
3 × [0,∞) that satisfy

(1), (2), (3), (6), (7).

(B) Existence and smoothness of Navier–Stokes solutions in R3/Z3. Take ν > 0 and

n = 3. Let u◦(x) be any smooth, divergence–free vector field satisfying (8); we take f(x, t) to be

identically zero. Then there exist smooth functions p(x, t), ui(x, t) on R
3 × [0,∞) that satisfy

(1), (2), (3), (10), (11).

(C) Breakdown of Navier–Stokes solutions on R3. Take ν > 0 and n = 3. Then there

exist a smooth, divergence–free vector field u◦(x) on R3, and a smooth f(x, t) on R3 × [0,∞),

satisfying (4), (5), for which there exist no solutions (p, u) of (1), (2), (3), (6), (7) on R3× [0,∞).
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(D) Breakdown of Navier–Stokes Solutions on R3/Z3. Take ν > 0 and n = 3. Then there

exist a smooth, divergence–free vector field u◦(x) on R3, and a smooth f(x, t) on R3 × [0,∞),

satisfying (8), (9), for which there exist no solutions (p, u) of (1), (2), (3), (10), (11) on R3×[0,∞).

These problems are also open and very important for the Euler equations (ν = 0), although

the Euler equation is not on the Clay Institute’s list of prize problems.

Let me sketch the main partial results known regarding the Euler and Navier–Stokes equa-

tions, and conclude with a few remarks on the importance of the question.

In two dimensions, the analogues of assertions (A) and (B) have been known for a long time

(Ladyzhenskaya [4]), also for the more difficult case of the Euler equations. This gives no hint

about the three–dimensional case, since the main difficulties are absent in two dimensions. In

three dimensions, it is known that (A) and (B) hold provided the initial velocity u◦ satisfies a

smallness condition. For initial data u◦(x) not assumed to be small, it is known that (A) and (B)

hold (also for ν = 0) if the time interval [0,∞) is replaced by a small time interval [0, T ), with

T depending on the initial data. For a given initial u◦(x), the maximum allowable T is called

the “blowup time.” Either (A) and (B) hold, or else there is a smooth, divergence–free u◦(x) for

which (1), (2), (3) have a solution with a finite blowup time. For the Navier–Stokes equations

(ν > 0), if there is a solution with a finite blowup time T , then the velocity (ui(x, t))1�i�3
becomes unbounded near the blowup time.

Other unpleasant things are known to happen at the blowup time T , if T <∞. For the Euler

equations (ν = 0), if there is a solution (with f ≡ 0, say) with finite blow–up time T , then the

vorticity ω(x, t) = curlxu(x, t) satisfies

∫ T
0

{
sup
x∈R3

|ω(x, t)|

}
dt =∞ (Beale–Kato–Majda) ,

so that the vorticity blows up rapidly.

Many numerical computations appear to exhibit blowup for solutions of the Euler equations,

but the extreme numerical instability of the equations makes it very hard to draw reliable

conclusions.

The above results are covered very well in the book of Bertozzi and Majda [1], to appear

soon.

Starting with Leray [5], important progress has been made in understanding weak solutions of

the Navier–Stokes equations. To arrive at the idea of a weak solution of a PDE, one integrates the

equation against a test function, and then integrates by parts (formally) to make the derivatives

fall on the test function. For instance, if (1) and (2) hold, then, for any smooth vector field

θ(x, t) = (θi(x, t))1�i�n compactly supported in R3×(0,∞), a formal integration by parts yields

−

∫∫
R3×R

u·
∂θ

∂t
dxdt−

∑
ij

∫∫
R3×R

uiuj
∂θi
∂xj

dxdt = ν

∫∫
R3×R

u·∆θ dxdt+

∫∫
R3×R

f ·θ dxdt−

∫∫
R3×R

p·(div θ)dxdt .

(12)
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Note that (12) makes sense for u ∈ L2, f ∈ L1, p ∈ L1, whereas (1) makes sense only if u(x, t)

is twice differentiable in x. Similarly, if ϕ(x, t) is a smooth function, compactly supported in

R
3 × (0,∞), then a formal integration by parts and (2) imply∫∫

R3×R

u · 	xϕ dxdt = 0 . (13)

A solution of (12), (13) is called a weak solution of the Navier–Stokes equations.

A long–established idea in analysis is to prove existence and regularity of solutions of a PDE by

first constructing a weak solution, then showing that any weak solution is smooth. This program

has been tried for Navier–Stokes with partial success. Leray in [5] showed that the Navier–Stokes

equations (1), (2), (3) in three space dimensions always have a weak solution (p, u) with suitable

growth properties. Uniqueness of weak solutions of the Navier–Stokes equation is not known.

For the Euler equation, uniqueness of weak solutions is strikingly false. Scheffer [8], and, later,

Schnirelman [9] exhibited weak solutions of the Euler equations on R3×R with compact support

in spacetime. This corresponds to a fluid that starts from rest at time t = 0, begins to move at

time t = 1 with no outside stimulus, and returns to rest at time t = 2, with its motion always

confined to a ball B ⊂ R3.

Scheffer [7] applied ideas from geometric measure theory to prove a partial regularity theo-

rem for suitable weak solutions of the Navier–Stokes equations. Caffarelli–Kohn–Nirenberg [2]

improved Scheffer’s results, and F.–H. Lin [6] simplified the proofs of the results in Caffarelli–

Kohn–Nirenberg [2]. The partial regularity theorem of [2], [6] concerns a parabolic analogue of

the Hausdorff dimension of the singular set of a suitable weak solution of Navier–Stokes. Here,

the singular set of a weak solution u consists of all points (x◦, t◦) ∈ R3 × R such that u is

unbounded in every neighborhood of (x◦, t◦). (If the force f is smooth, and if (x◦, t◦) doesn’t

belong to the singular set, then it’s not hard to show that u can be corrected on a set of measure

zero to become smooth in a neighborhood of (x◦, t◦).)

To define the parabolic analogue of Hausdorff dimension, we use parabolic cylinders Qr = Br×
Ir ⊂ R3 × R, where Br ⊂ R3 is a ball of radius r, and Ir ⊂ R is an interval of length r2. Given

E ⊂ R3 × R and δ > 0, we set

PK, δ(E) = inf

{
∞∑
i=1

rKi :Qr1 , Qr2 , · · · cover E, and each ri < δ

}
,

and then define

PK(E) = lim
δ→0+

PK, δ(E) .

The main results of [2], [6] may be stated roughly as follows.

Theorem.

(A) Let u be a weak solution of the Navier–Stokes equations, satisfying suitable growth con-

ditions. Let E be the singular set of u. Then P5/3(E) = 0.
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(B) Given a divergence–free vector field u◦(x) and a force f(x, t) satisfying (4) and (5), there

exists a weak solution of Navier–Stokes (1), (2), (3) satisfying the growth conditions in (A).

In particular, the singular set of u cannot contain a spacetime curve of the form {(x, t)εR3 ×
R:x = φ(t)}. This is the best partial regularity theorem known so far for the Navier–Stokes

equation. It appears to be very hard to go further.

Let me end with a few words about the significance of the problems posed here. Fluids

are important and hard to understand. There are many fascinating problems and conjectures

about the behavior of solutions of the Euler and Navier–Stokes equations. (See, for instance

Bertozzi–Majda [1] or Constantin [3].) Since we don’t even know whether these solutions exist,

our understanding is at a very primitive level. Standard methods from PDE appear inadequate

to settle the problem. Instead, we probably need some deep, new ideas.

References

[1] A. Bertozzi and A. Majda, Vorticity and Incompressible Flows, Cambridge U. Press, to appear.

[2] L. Caffarelli, R. Kohn, and L. Nirenberg, Partial regularity of suitable weak solutions of the Navier–Stokes

equations, Comm. Pure & Appl. Math. 35 (1982), 771–831.

[3] P. Constantin, Some open problems and research directions in the mathematical study of fluid dynamics,

in Mathematics Unlimited–2001 and Beyond, Springer Verlag, to appear.

[4] O. Ladyzhenskaya,, The Mathematical Theory of Viscous Incompressible Flows (2nd edition), Gordon and

Breach, 1969.

[5] J. Leray, Sur le Mouvement d’un Liquide Visquex Emplissent l’Espace, Acta Math. J. 63 (1934), 193–248.

[6] F.–H. Lin, A new proof of the Caffarelli–Kohn–Nirenberg theorem, Comm. Pure. & Appl. Math. 51 (1998),

241–257.

[7] V. Scheffer, Turbulence and Hausdorff dimension, in Turbulence and the Navier–Stokes Equations Lecture

Notes in Math. No. 565, Springer Verlag, 1976, pp. 94–112.

[8] , An inviscid flow with compact support in spacetime, J. Geom. Analysis 3 No. 4 (1993), 343–401.

[9] A. Shnirelman, On the nonuniqueness of weak solutions of the Euler equation, Comm. Pure & Appl. Math.

50 (1997), 1260–1286.


