THE BEALE CIPHER: A DISSENTING OPINION

by

James J. Gillogly

This paper originally appeared in Cryptologia, April 1980; Volume 4, Number 2.
Other Papers by Gillogly

| $-\quad$ Ciphertext-only Cryptanalysis of Enigma | \bullet Cryptograms from the Crypt |
| :--- | :--- | :--- |
| $-\quad$ Breaking an 18th Century Shorthand System | |

Abstract. The Beale Treasure Cipher (B1) has withstood the attacks of several generations of amateur and professional cryptanalysts. This paper reports a statistical anomaly in B1 which suggests that it my be a hoax.

Keywords: Beale Cipher, homophonic cipher, book cipher, treasure cipher.
In 1885 James B. Ward of Virginia published a pamphlet describing a fabulous treasure buried by an explorer named Thomas Jefferson Beale in Bedford County, Virginia, over 60 years earlier. The location, contents, and intended beneficiaries of the treasure were concealed in three separate ciphers. Ward claimed to have broken the second cipher (B2), describing the contents, and found it to be a book cipher based on the Declaration of Independence (DOI). The words of the DOI were numbered consecutively, and each plaintext letter was replaced with the number of a word in the DOI beginning with that letter. The details of the encryption are discussed exhaustively by Dr. Carl Hammer [1], The initials of words in the DOI are given in Table 1.

The first of the Beale Cipher papers (Bl) contains 495 numbers from 1 to 2906 (Table II). This would seem to preclude the DOI, with only 1322 words, from being the key text. This impression is supported if the first few characters of B1 are decrypted with the DOI, yielding SCS?E TFA?G CDOTT where ? stands for the plaintext of a ciphertext number greater than 1322. This much gibberish was probably adequate to dissuade early cryptanalysts from pursuing this line.

But it is difficult to bore a computer. I wrote a very simple program which accepts as input a cryptogram in "Beale cipher" and the initial letters of any document, and attempts the decryption. Table III shows the result of applying the DOI to B1. If the DOI is the wrong key, the resultant text should be a random sequence of letters drawn from the distribution of DOI initials.

There are a number of oddities in this "decryption," but the most striking is the sequence ABFDE FGHII JKLMM NOHPP. Note in passing that the first F is encrypted as 195 and that letter 194 of the DOI is a C. Similarly, the last H is 301, and letter 302 of the DOI is an O. Hammer [1] noted 23 examples where the person who encrypted B2 made errors of this type, or about one every 33 letters. But correcting these errors is not
critical to the argument. We will henceforth consider only the 14-letter monotonically increasing string DEFGH IIJKL MMNO.

This is obviously an unlikely occurrence to tied in an assumed random text. To establish just how unlikely, consider the following simple model: assume 26 letters of equal frequency and find the expected number of monotonic runs of each length. For a sequence of length 3, say, the probability that the second letter is equal to or one greater than the first is $2 / 26$ or $1 / 13$, assuming for the sake of neatness that A is the successor of Z . Similarly, the probability that the third letter continues the sequence is $1 / 13$, so that the probability of a sequence at least 3 letters long is $1 /\left(13^{\wedge} 2\right)$, or about $10^{\wedge}-4$. Thus one would expect to find about three $495 /\left(13^{\wedge} 2\right)$ sequences of at least 3 characters in a random text of 495 equally likely letters.

Continuing the argument, the probability of a sequence of at least 14 letters is $1 /\left(13^{\wedge} 13\right)$, or about $10^{\wedge}-14$. In a random text of 495 characters, the odds against getting a sequence this long would be about $10^{\wedge} 12$ to 1 .

Those figures are only approximate because the frequencies of initial letters in the DOI are assuredly not evenly distributed across the alphabet. The prevalence of T (the, that, etc.) suggests that strings of T's would be considerably more frequent. Hammer [1] shows 19% for T, which would give the sequence TTTTT (which occurs at position 135) an expected value of 0.6 occurrences in a text this long, which is acceptably high. On the other hand, J and K are very much less common. In order to construct the sequence DEFGH IIJKL MMNO, the hypothetical random selection had to choose one of the 10 J 's in the DOI, followed by one of the 4 K 's. The effects of the unevenness of the distribution tend to offset one another.

How could this kind of sequence occur? Among the possibilities is that it is a random event, and "just happened" in a cryptogram enciphered using another document. This is quite unlikely, as the previous arguments show. Another possibility is that the DOI is in fact the key, but that another level of encryption (e.g. elimination of nulls) must be stripped away. My investigations do not preclude this possibility, although I have been unable to extract any intelligible plaintext from it. Also, Hammer [3] is convinced that the same method was used to encrypt B1 and B2, and B2 did not use a second level of encryption.

My inclination is to a third possibility: that at least the first document, B1, is a hoax. I visualize the encryptor selecting numbers more or less at random, but occasionally growing bored and picking entries from the numbered Declaration of Independence in front of him, in several cases choosing numbers with an alphabetic sequence.

The view of the Beale ciphers as a hoax is supported to some extent by the decrypted message of B2 [2], which ends "Paper number one describes the exact locality of the vault, so that no difficulty will be had in finding it." Hammer has shown [1] that encryption was, for the author of B2, extremely laborious and fraught with error. Why would he waste the effort of encrypting another 87 characters of a message which would be redundant when the first paper, B1, was deciphered? When viewed as a hoax it makes perfect sense: the author wanted to sell the idea that the first document was worth reading.

It is often much more difficult, if not impossible, to prove that a document is meaningless than to extract the sense from a meaningful one. The observations in this paper do not constitute an unequivocal proof that the Beale treasure cipher, Bl, is a hoax, but they do constitute strong evidence that the Declaration of Independence was used to encipher at least the long alphabetic string. This fact should be taken into account in any theory of the authorship and intent of the Beale Ciphers.

REFERENCES

1. Hammer, Carl. 1979. "How Did TJB Encode B2?" Cryptologia. 3: 9-15.
2. Innis, P. B. 1964. "The Beale Fortune." Argosy. August: 70-71, 82-84.
3. Kahn, David. 1967. The Codebreakers. New York: Macmillan. 771-772.

1 WITCOHEIBN	101	LLATPOHTTS	201	AAEHSTMAMD	301	HOTPKOGBIA
11 FOPTDTPBWH	111	TRGAIAMDTJ	211	TSWEASTTRT	311	HORIAUAHID
21 CTWAATAATP	121	PFTCOTGTWA	221	BATFTWTAAB	321	OTEOAATOTS
31 OTETSAESTW	131	FOGBDOTEII	231	WALTOAAUPI	331	TPTLFBSTAC
41 TLONAONGET	141	TROTPTAOTA	241	TSOEADTRTU	341	WHHRHATLTM
51 ADRTTOOMRT	151	IATINGLIFO	251	ADIITRIITD	351	WANFTPGHHF
61 TSDTCWITTT	161	SPAOIPISFA	261	TTOSGATPNG	361	HGTPLOIAPI
71 SWHTTTBSET	171	TTSSMLTETS	271	FTFSSHBTPS	371	USITOTHASB
81 AMACETTAEB	181	AHPIWDTGLE	281	OTCASINTNW	381	OAWSSHHUNT
91 TCWCURTATA	191	SNBCFLATCA	291	CTTATFSOGT	391	ATTHHRTPOL
401 FTAOLDOPUT	501	IOAHRTTPAL	601	OATAAPOTSH	701	AUFPTBAMTT
411 PWRTRORITL	511	FTETSRITME	611	HEAMONOASH	711	PFAMWTSCOT
421 ARITTAFTTO	521	TATDOTFWAC	621	SOOTHOPAEO	721	IOTSFCOOTW
431 HHCTLBAPUU	531	WHHETPTPOT	631	TSHHKAUITO	731	APOTWFITOU
441 ADFTDOTPRF	541	SFTPOTLFNO	641	PSAWTCOOLH	741	WOCFDUIMCO
451 TSPOFTICWH	551	FRTPOTETMH	651	HATRTMIOAS	751	TBOTBJFTUB
461 MHHDRHRFOW	561	ARTCONAOLH	661	TTCPHHCWOT	761	STBTFPOFAT
471 MFHIOTROTP	571	HOTAOJBRHA	671	SUTAJFTOCA	771	FSOELIANPE
481 HHRFALTASD	581	TLFEJPHHMJ	681	UBOLGHATTA	781	TAAGAEIBSA
491 TCOTBEWTLP	591	DOHWAFTTOT	691	OPLFQLBOAT	791	TRIAOAEAFI
801 FITSARITCF	901	TABWCOCAPS	1001	TOWHPFRITM	1101	AWHCTBTTOO
811 TAOCAOMVLA	911	PITMBAATUI	1011	HTORPHBAOB	1111	CKTDTUWWII
821 AYTFOOGFSO	921	HOACNHHCOF	1021	RIAPWCITMB	1121	OCACTTHBDT
831 OLADTIWPTL	931	CTCOTHSTBA	1031	EAWMDATIUT	1131	TVOJAOCWMT
841 FUIACWHHAG	941	ATCTBTEOTF	1041	BTROAFPNHW	1141	AITNWDOSAH
851 HBDUOOHPAW	951	ABOTFTBTHH	1051	BWIATOBBWH	1151	TAWHTROMEI
861 WAUHHPOSRO	961	HEDIAUAHET	1061	WTFTTTOABT	1161	WIPFWTTROT
871 CBOTADTLOO	971	BOTIOOFTMI	1071	LTEAUJOUWH	1171	USOAIGCAAT
881 PHIATTTLAO	981	SWKROWIAUD	1081	RTOTCOOEAS	1181	TSJOTWFTRO
891 FMTCTWODDA	991	OAAXACIESO	1091	HWHATTNJAM	1191	OIDITNABAO
1201 TGPOTCSPAD	1301	FROTPODMWM				
1211 TTUCAAOROT	1311	PTEOOLOFAO				
1221 BFAISTTAAF	1321	SH				
1231 AATTBCATAP						
1241 CBTATSOGBI						
1251 AOTBTDATAF						
1261 AISTHFPTLW						
1271 CPCAECATDA						
1281 OAATWISMOR						
1291 DAFTSOTDWI						

Table I. Initial letters of words in the Declaration of Independence.
 144064278113921363901120815312620184074758485 604230436664582150251284308231124211486225401370 111013051391891733882081931451947341691826328 500538356117136219271761301046025485184366584200 2831183201383641628015712249614416401398861304 122124283134926324648668272191843607801864463 47413116079734409518645813469128367460178112103 82062116971038627060131747154020812189034636150 59568614131206321981221601780993518211368721528 1708843044112181474361953203712211361408120305 42584614410630113408680938611653082568910238416 8971216728965818238121195143261482341855131234
 201206863621932082984068326194812285216284919861 32698523364682324319605029812163216031461281360

```
36}515162194 78 60 200 314 676 112 4 28 18 61 136 247 819 921,
```

$106046489510666119384149602423962302 \quad 2948757814$

$\begin{array}{lllllllllllllllllllllllllll}340 & 19 & 242 & 31 & 86 & 234 & 140 & 607 & 115 & 33 & 191 & 67 & 104 & 86 & 52 & 88 & 16 & 80 & 121\end{array}$
67951222165489611201773642186566789023615421110
98341195621611971218116414961817513921036319540

$\begin{array}{lllllllllllllllllllllllllllll}261 & 543 & 897 & 624 & 18 & 212 & 416 & 127 & 931 & 19 & 4 & 63 & 96 & 12 & 101 & 418 & 16 & 140\end{array}$

1300170681422113240102348589751101841679231681
12232440391222793644755863443212107963142641065
323328601203124952168142906654820230111217621371
$\begin{array}{llllllllllllllllllllll}87 & 96 & 202 & 35 & 10 & 2 & 41 & 17 & 84 & 221 & 736 & 820 & 214 & 11 & 60 & 760\end{array}$

Table II. The Beale Treasure Cipher (B1).

```
SCS?E TFA?G CDOTT UCWOT WTAAI WDBII DTT?W TTAAB BPLAA ABWCT
LTFIF LKILP EAABP WCHOT OAPPP MORAL ANHAA BBCCA CDDEA OSDSF
HNTFT ATPOC ACBCD DLBER IFEBT HIFOE HUUBT TTTTI HPAOA ASATA
ATTOM TAPOA AAROM PJDRA ??TSB COBDA AACPN RBABF DEFGH IIJKL
MMNOH PPAWT ACMOB LSOES SOAVI SPFTA OTBTF THFOA OGHWT ENALC
AASAA TTARD SLTAW GFESA UWAOL TTAHH TTASO TTEAF AASCS TAIFR
CABTO TLHHD TNHWT STEAI EOAAS TWTTS OITSS TAAOP IWCPC WSOTT
IOIES ITTDA TTPIU FSFRF ABPTC COAIT NATTO STSTF ??ATD ATWTA
TTOCW TOMPA TSOTE CATTO TBSOG CWCDR OLITI BHPWA AE?BT STAFA
EWCI? CBOWL TPOAC TEWTA FOAIT HTTTT OSHRI STEOO ECUSC ?RAIH
RLWST RASNI TPCBF AEFTB
```

Table III. "Decryption" of B1 using the DOI.

Copyright October 1980 by Cryptologia and James J. Gillogly
Mail Jim Gillogly.
Converted to hypertext by Joe Peschel October, 2000.
web hosting • domain names \cdot web design online games • photo sharing blog. - advertising online

