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Abstract

This paper describes a method for determining an
object's pose given its 3D model and a 2D view. This
2D-3D registration problem arises in a number of med-
ical applications, e.g. image guided spine procedures.
Previous approaches often rely on a good initial esti-
mate of the pose parameters and an optimization pro-
cedure to re�ne this initial pose estimate, e.g. the it-
erative closest point (ICP). However, such algorithms
can identify local minima as global minima, leading to
registration errors, if the initial pose is not carefully
chosen. The speci�cation of the appropriate initial con-
ditions, however requires user interaction and is time
consuming. We pr opose an approach where sample 2D
views are generated from the 3D model and matched
against the given view (2D-3D registration). Additional
views are then generated in the vicinity of the best view
and the procedure is repeated until convergence. Results
of estimating the coordinates of a vertebrae spine bone
from its 3D model, obtained from volumetric (CT or
MR) data, and a 2D view, as might be obtained from
uoroscopic data, demonstrates that the pose can be
reliably obtained without requiring extensive user in-
terface.

1 2D-3D Shape Registration
Medical applications often require the alignment of

coordinates between a 3D shape and a 2D image of
it. This process of aligning spatial data to projective
data is referred to as 2D-3D registration [8]. For exam-
ple, in image guided spine procedures, pre-operative
volumetric datasets, such as MR or CT of a patient,
need to be matched against intra-operative two dimen-
sional images, such as X-rays or uoroscopic images
[2]. While there is extensive work on 3D-3D and 2D-2D
registration, 2D-3D registration has received relatively
less attention. Problems associated with extrinsic reg-
istration methods, such as the invasive nature of the
procedure, or poor accuracy if less invasive methods
are used, have encouraged the development of intrin-
sic methods. Shape-based registration is a particularly
attractive intrinsic method especially when registering

Figure 1: This �gure illustrates the process of pose estima-
tion by shape matching. The 3D object is shown at the cen-
ter of a viewing sphere, depicted by the larger circle with an
associated object-centered coordinate system. We assume
the 3D model of the object is described in this coordinate
system. A point on the sphere represents a projection (e.g.,
an X-ray direction) or a pose. This point is completely
speci�ed by the two angles, � and � as shown. The projec-
tion gives rise to an image described in an image-centered
coordinate system. The goal of this 2D-3D registration is to
recover the projection direction which produces the given
2D image from projection given the 3D model.

rigid structures such as bone. Such methods rely on
geometric or anatomical features such as corners [8] or
curvature [4] to determine registration parameters.

A popular registration method is the iterative closest
point (ICP) algorithm [1]. In this approach, the shape
to be registered is �rst placed in close proximity, in lo-
cation and orientation, to the target shape. Second, for
each point on one shape, the closest point on the target
shape is found and the distance between the two shapes
is computed as a least square sum of their distances.
Third, the pose parameters of the shape are adjusted
incrementally in the direction which minimizes the sum
squared distances between the two shapes. The process
of calculating and minimizing the distance is iterated
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Figure 2: Hierarchical Iterative Registration. The viewing
sphere is �rst coarsely sampled. For each point the pro-
jected image is compared to the target image and the best
matching views are selected. These then represent a \fo-
cus" are, which is resampled at a higher resolution and the
process is repeated to convergence. The global search is
e�cient and avoids the local minimum problem associated
with gradient descent.

until convergence. This algorithm is e�ective, easy
to implement, and robust, if the initial pose is close
enough to the true pose of the target shape. However,
with a distant initial pose, the process can converge to
local minima, thereby requiring further user interaction
or unnecessary delays.

Our 2D-3D registration approach avoids the local
minima problem inherent in many gradient descent
type approaches by hierarchically searching the space
of possible poses using a notion of similarity between
the projected shape and the 2D target shape, in a fash-
ion reminiscent of the aspect graph approach [6, 7].
Speci�cally, a coarse sampling of the viewing sphere
leads to a number of projected shapes which are each
matched against the given view and a similarity score
is obtained for each. The area in the vicinity of the
best resulting view is then sampled in a �ner manner
and the best views are again selected. The procedure
is then repeated to convergence, Figure 2.

This paper is organized as follows. Section 2 de-
scribes the process of generating views in a hierarchi-
cal, iterative fashion. Section 3 describes the shape
representation and matching strategy used to select the
most similar views. Section 4 presen ts results for spine
vertebrae and carpal bones. Section 5 concludes the
paper.

(a)

(b)

(b)

Figure 3: 3D Models and examples of projections.

2 Registration Based on Shape Match-
ing

The 2D-3D registration method proposed here is
based on a sampling of the viewing sphere and match-
ing the given 2D view with the series of projected
shapes to determine the best view. It is related to the
\aspect graph" approach [6, 7], which parcellates the
viewing sphere into equivalent views bounded by the
singularities of the projection. The method presented
here is similar in that pose estimation uses a parcel-
lation of the viewing sphere, but one which is based
on a uniform and hierarchical sampling. Speci�cally,
the method iterates on the following steps. We assume
the object is centered at the origin of the coordinate
system, Figure 1.

First, in the initialization stage, the viewing sphere
is sampled coarsely and uniformly in to N views, Fig-
ure 2(a). The 3D object model is projected on the
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Figure 4: The result of the �rst stage of matching is shown:
the two best views of spinal vertebra (�rst and second row)
and a carpal bone (third row) are shown.

target plane for each view. This generates N binary
images of the projected shape (Figures 5 and 6). Each
view is described by � and �, where � is the angle
between the viewing vector ~v and the ~Z axis, while
� is the angle between the projection of ~v and the
X-Y plane and the ~Y axis. The two parameters �

and � determine the unit viewing vector ~v uniquely
as ~v = (sin�sin�; cos�sin�; cos�). W e assume that the
viewing vector, ~v, is aligned with �Z, where ( �X; �Y ; �Z)
describes the image coordinate axis. Having deter-
mined (�; �), this leaves one degree of freedom in re-
lating ( �X; �Y ; �Z) to (X, Y, Z), namely the rotation of
( �X; �Y ; �Z) around �Z . This is speci�ed by � < (X; �X).
These three parameters, �; �; and �, completely de-
scribe the relationship between the object-centered co-
ordinate system (X, Y, Z) and the image-based coordi-
nate system ( �X; �Y ; �Z). Out approach is to determine �
and � via a shape matching procedure, and determine �
from the rotation angle that brings the projected shape
into alignment with the viewed shape.

Second, the projected shapes are each matched
against the viewed shape and ranked according to the
extent of similarity. The basic assumption here is that
projected views which are closer to the object pose gen-
erate more similar views. This is strictly not true for
highly symmetric objects such as spheres, but holds for
objects with any degree of asymmetry which allow var-
ious views to be distinguished. We will show that while
for shapes with various protrusions the algorithm per-
forms well, it also performs well with blobby shapes,
such as carpal bones. As an example, consider Figure
4, where the unknown views of a spine vertebra and a
carpal bone are matched against N samples from the
viewing sphere. The matching strategy is discussed in
Section 3. The assumption is that this matching pro-
cedure returns a similarity measure which can be used
to rank order projected views according to extent of
similarity to the given view.

�n� 000 045 090 135
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Figure 5: Results of generating projections of carpal bone
model at 45 degree intervals.

Third, having obtained an initial estimate of the ob-
ject pose, the procedure is repeated but with novel pro-
jected samples closely centered around the best N views
serving as foci of sampling. Figure 2 illustrates the it-
erative process. The black dots represent the views
being used to generate the images compared in the
shape matching. The gray dots represent previously
used views. The process uses the closest matches in
each iteration to determine a focus point for the set
of views in the next iteration. The gray star repre-
sents the position of the camera when the 2D projec-
tion was generated. This is the unknown pose of the
object which our algorithm is attempting to recover.
The matching procedure is repeated to convergence as
determined by the desired accuracy, and the pose of
the object is recovered.

3 Matc hing Projected and Target

Views

The method described in Section 2 relies on a match-
ing strategy to indicate the proximity of two views of
the same 3D object. Several methods have been pro-
posed to measure the similarity of the shape based on
silhouettes [3] or based on their medial axis [9, 10].
W e selected the shock graph matching strategy known
as the \graduated assignment algorithm" [5] used
in [9]. This approach represents the shape by its me-
dial axis with associated velocities, and matches two
shapes by matching the resulting graphs (known as
shock graphs). Two shock graphs are matched by a
pair-wise assignment of nodes represented by a match
matrix and a goodness of match functional which is the
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Figure 6: Results of generating projections of �rst spine
vertebra model at 45 degree intervals.

sum over the goodness of match or any pair of links
connecting any two pairs of nodes. The best match is
the one that maximizes this functional which is found
by a simulated annealing type algorithm. The energy
of the best matches gives the extent of the similarity
between the two shapes. In [9] this approach was used
for indexing into image databases, whereas we use the
matching strategy for a comparison of views of an ob-
ject. Figure 7 illustrates the shock graphs for each of
the views in Figure 6.

4 Experimen ts and Results
We now describe the details of our method used

in a sequence of experiments to verify the validity of
this approach in determining the relative pose of an
object from a single view. We use three CT volu-
metric datasets, two from the spine and one from the
wrist. The spinal vertebrae and carpal bone were seg-
mented and are visualized in Figure 3. The algorithm
initially selects N=13 viewing samples, corresponding
roughly to a 45 degree separation between views. These
views are the following in the (�; �) coordinate sys-
tem: [(0,0), (45,0), (45,45), (45,90), (45,135), (90,0),
(90,45), (90,90), (90,135), (135,0), (135,45), (135,90),
(135,135)]. The 3D object model obtained from the
segmentation from the CT data is projected onto these
views. The shock graph of the projected view is ob-
tained and compared to the target view, rank ordered
by similarity, and the top M matc hes are selected.

The results generated at each step determine a
range, between which the unknown position lies. This
range can be found by starting at the closest match
and traversing down the chart until 2 di�erent results
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Figure 7: Results of shock generation on projections of �rst
spine vertebra model at 45 degree intervals.

are found, in each of the � and � directions. Using
Table 1 as an example, 45.0 degrees in � becomes the
�rst boundary. Moving to the next match displays 0.0
degrees as the next match. This forms the new range.
The same process is used in the � direction. The new
range of projections to be used for matching becomes
0 and 45 degrees (�) and 90 and 135 degrees (�). The
angle increment is decreased by half, from 45 degrees
to 22.5 degrees, and new projection images are gener-
ated for this limited range. Shocks are generated, then
matched and the results then decide the next range of
angles for projection. This process is repeated until a
resulting range is su�ciently small enough for the de-
sired result, or the speci�c angle is discovered; Table 2
shows anther example. Figure 2 shows that the e�ect
of decrementing the step and resetting the boundaries,
causes a "focusing" into the unknown angles.

We now describe the experiments. The �rst spine
vertebra, Figure 3(a), where the 3D model was pro-
jected at a randomly generated view (� = 19; � = 162);
this represents the unknown view. Table 3(a) repre-
sents the top three results of the rank ordering of the
13 initial views (separated by 45 degrees). The top two

Rank � �

1 045.00 135.00

2 000.00 090.00

3 045.00 090.00
4 090.00 135.00

Table 1: Sample results of shock matching.
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Rank � �

1 090.00 045.00

2 090.00 000.00

3 045.00 000.00

Table 2: Results of carpal bone distance matching (un-
known angles: (80,15) degrees)

(a)

Rank � �

1 000.00 135.00

2 000.00 180.00

3 045.00 180.00

(b)

Rank � �

1 022.50 157.50

2 000.00 157.50
3 000.00 180.00

(c)

Rank � �

1 022.50 157.50

2 011.25 168.75

3 011.25 157.50

(d)

Rank � �

1 023.00 157.00

2 017.00 157.00
3 017.00 163.00

(e)

Rank � �

1 020.00 160.00

2 017.00 160.00
3 017.00 163.00

(f)

Rank � �

1 018.00 160.00

2 019.00 162.00
3 018.00 162.00

Table 3: Results of pose
recovery for spine model 1.

(a)

Rank � �

1 090.00 000.00

2 045.00 000.00
3 045.00 045.00

(b)

Rank � �

1 067.50 000.00

2 090.00 022.50

3 067.50 022.50

(c)

Rank � �

1 078.75 022.50

2 090.00 011.25

3 078.75 011.25

(d)

Rank � �

1 078.00 011.00

2 084.00 017.00

3 084.00 011.00

(e)

Rank � �

1 081.00 017.00

2 078.00 014.00

3 078.00 017.00

(f)

Rank � �

1 080.00 014.00

2 080.00 016.00
3 079.00 015.00

Table 4: Results of pose
recovery for carpal bone
model.

(a)

Rank � �

1 045.00 180.00

2 000.00 135.00

3 000.00 045.00

(b)

Rank � �

1 022.50 180.00

2 000.00 157.50

3 000.00 180.00

(c)

Rank � �

1 011.25 168.75

2 022.50 168.75
3 011.25 180

(d)

Rank � �

1 011.00 168.00

2 017.00 174.00

3 023.00 168.00

(e)

Rank � �

1 011.00 168.00

2 014.00 171.00

3 011.00 171.00

(f)

Rank � �

1 013.00 170.00

2 014.00 170.00
3 014.00 171.00

Table 5: Results of pose
recovery for spine model 2.

(a)

Rank � �

1 045.00 000.00

2 000.00 000.00
3 000.00 045.00

(b)

Rank � �

1 022.50 045.00

2 000.00 022.50

3 000.00 045.00

(c)

Rank � �

1 011.25 022.50

2 022.50 033.75

3 022.50 022.50

(d)

Rank � �

1 023.00 022.00

2 017.00 028.00

3 023.00 028.00

(e)

Rank � �

1 020.00 022.00

2 020.00 025.00

3 023.00 028.00

(f)

Rank � �

1 021.00 025.00

2 021.00 023.00
3 020.00 025.00

Table 6: Results of pose
recovery for spine model 2,
on a second test run.

views \trap" the unknown pose between 0 < � < 45
and 135 < � < 180. The second iteration increases
the sampling frequency to 22.5 degrees and the process
is repeated in the interval selected by the �rst step.
The results of the second step are shown in Table 3(b),
where the interval 0 < � < 22:5 and 157:5 < � < 180:0
is correctly identi�ed. Tables 3(c), 3(d), 3(e) and 3(f)
reduce the sampling interval by half for each iteration
so that after six iterations the approximate pose (e�=18,e�=160) is selected.

The second experiment used the second spine verte-
brae, Figure 3(b) at the pose of (� = 13, � = 170). The
initial round of matching gives a range of 0 < � < 45
and 135 < � < 180, which is increasingly re�ned, Ta-
bles 5(a) through 5(f). After six iterations, the result-

ing pose estimate is found to be (e�=13, e�=170). Since
the exact pose is found, no further iterations are nec-
essary.

The third experiment repeated the second experi-
ment with a second unknown pose (� = 20; � = 24).
Tables 6(a) through 6(f) show that the iterative proce-
dure correctly zones in onto the target view for a �nal
estimate after six iterations of (e�=21, e�=25).

The fourth experiment used a shape with no pro-
trusions, a carpal bone, Figure 3(c), with an unknown
pose of (� = 80; � = 15). Table 4(a) through 4(f) show
that the iterations focus the projections correctly to
the �nal increment, and select (e�=80.0, e�=14.0).

Finally, to quantify the pose estimation error be-
tween the actual pose (�, �) and the estimated pose

(e�, e�), we obtained an error measure, E

E =

q
(�� e�)2 + (� � e�)2

which is obtained for various poses of the two spine
vertebrae and displayed in Table 7. It is clear that with
six iterations, we can reliably arrive at a pose estimate
which are approximately 2 degrees of the actual pose,
with a mean error �=0.991 and a standard deviation of
�=0.7. W e plan to repeat this procedure for numerous
other shapes and poses to determine the nature of the
error more comprehensively

5 Conclusion

We have presented a technique for 2D-3D registra-
tion of 3D volumetric images such as CT and MR, and
2D projection images such as X-ray and uoroscopic
images. The method relies on a segmentation of a
known structure, such as a bone or any other organ
or structure with su�cient asymmetry in both the vol-
umetric and projection images. Once the 3D and 2D
shapes are obtained, we use a hierarchical shape match-
ing scheme where coarse samples of the viewing sphere
are matched against the target view, and the process
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Model Test � � Error
Spine 1 1 018.00 160.00 2.236
Spine 1 1 019.00 162.00 0.000
Spine 1 1 018.00 162.00 1.000
Spine 2 1 013.00 170.00 0.000
Spine 2 1 014.00 170.00 1.000
Spine 2 1 014.00 171.00 1.414
Spine 2 2 021.00 025.00 1.414
Spine 2 2 021.00 023.00 1.414
Spine 2 2 020.00 025.00 1.000

Carpal Bone 1 080.00 014.00 1.000
Carpal Bone 1 080.00 016.00 1.000
Carpal Bone 1 079.00 015.00 1.414

Table 7: Results

is repeated for samples close to the top matches. W e
have shown that for spine vertebrae and carpal bones
this process robustly and reliably recovers the correct
pose to about 2 degrees of accuracy within six itera-
tions. The main advantage of this approach is that it
is a global process and avoids local minima, which are
problematic for gradient descent techniques. In addi-
tion the computational burden is reduced; in the ex-
periments shown, only 58 views were generated and
matched for each.

One of the limitations of the current algorithm is
the dependence on the accuracy of the shape match-
ing process. Since the matching scheme selected here
focuses on the topology of the shape via the medial
axis it performs well for weakly similar shapes, and as
the pose is re�ned the matching strategy is not sen-
sitive to small changes for highly similar shapes. W e
plan to use an improved silhouette matching technique
for the �nal iterations of out procedure. This should
improve the accuracy of the registration scheme to the
sub-degree range while maintaining the same reliability
and e�ciency, without user interaction.
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