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Abstract
This paper presents a two phase technique for grid gener-
ation over trimmed parametric surface patches that model
components of the surface of a geometrically complex ob-
ject like an aircraft or an automobile. In the first phase, the
parametric domain of a trimmed surface patch is reparameter-
ized to a computationally convenient parametric domain – a
square. In the second phase, an initial surface grid generated
using the new parametric domain is optimized with respect
to an objective function. The objective function is non-linear
and is formulated for three desirable properties – smoothness,
orthogonality, and adaptivity. Simulated annealing method
is used for obtaining solution to the non-linear optimization
problem. The use of a simple reparameterized domain en-
ables us to derive simple and efficient methods for choosing a
valid initial grid and also for ensuring grid validity during the
optimization phase.

Keywords: trimmed surface patch, reparameterization, grid
generation, grid optimization, and simulated annealing.

1 Introduction

Most engineering analysis and visualization processes require
tessellated representations of CAD system generated geometric
models in the form of meshes made up of planar quadrilat-
eral or triangular elements. Automatic tessellation of such
trimmed surface patches has been a problem of significant
interest in the graphics and CAGD fields for quite some time
now. The right tessellation can tremendously improve the effi-
ciency of the engineering process using the tessellated model.
It is well known that mesh quality affects both efficiency and
accuracy of CFD solutions [6].

One of the primary difficulties arises out of the fact that the
surfaces are defined using higher order non-linear functions,
typically, rational polynomial functions. Further, providing
control over the tessellation in a fashion that can make the
engineering process efficient makes it even more complex.
The desired tessellation is one which satisfies a number of
properties like control over shape of elements, mesh size op-
timality at the desired level of detail, distribution of elements
in proportion to the variation in the property and smoothness
in element size variation.

A large number of techniques have been proposed for auto-
matic tessellation of trimmed surface patches, each with its
own performance properties and its own application domain.
Until recently most methods were simple parameter subdivi-
sion based tessellation techniques [1, 11], that are based on
the efficient evaluation of the surface geometry and surface
geometric properties, like tangents, normals, curvature etc.
[13]. In [12], implementation of structured and unstructured
grid generation procedures are described for trimmed para-
metric surface patches. For an unstructured grid, the trimmed
parametric domain is used as such, and the quality of the trian-
gles over the surface is controlled by computing them directly
over the surface. Both advancing front and Delaunay methods
have been extended to work directly on the physical domain.
For a structured grid, the trimmed parametric domain is repa-
rameterized to a square domain using Coons’ patch [7]. Even
though this works for many cases, there is always the possi-
bility that the Coons’ patch will extend beyond the original
parametric domain particularly when it is concave, leading to
invalid grids.

The aim of the work reported here is twofold: first, we need
a simple method of ensuring valid grids at any time in the
grid generation process, and second, we must achieve control
over the quality of the grid specified in terms of smoothness,
orthogonality and adaptivity in distribution of points. We
describe a two phase technique, with the first phase called as
reparameterization, serving the purpose of obtaining a suitable
intermediate mapping method that ensures valid grids. The
second phase in our technique is grid optimization for opti-
mally positioning mesh points on the trimmed surface patches,
once again ensuring grid validity when grid points are moved.

1.1 The Two-phase Optimal Grid Generation
Technique

The surface patches presented to the tessellator may be defined
over bi-parametric polynomial surfaces (e.g. NURBS) or over
triangulated surfaces.

Reparameterization: In case of parametric surfaces, the pre-
image of the trimmed patch may take any arbitrary shape.
This pre-image forms a very inconvenient computational do-
main to work with. A convenient computational domain for
placement of points on the surface patch boundary and the in-
terior region is first obtained. This is done by deriving a new



parameterization for the trimmed patch that gives a square
parametric� domain. Then onwards, the mapping of points on
the surface patch is done via the new parameterization. In
case of triangulated representation of the surface patch, the
patch is parameterized by a method suggested by Floater [5].
Floater discusses parameterization of a surface defined by a
triangulation. Even though the purpose is surface fitting for
shape fidelity, his work contains interesting techniques which
we have adapted and used in surface grid generation.

Grid Optimization: Phase two treats the different surface
patch representations uniformly. In this phase, an objective
function is formulated for optimizing the grid point positions
satisfying the given boundary constraints and also maximiz-
ing the desired qualities. The function is formulated in terms
of metrics derived from the surface patch and the topological
relationships which are known on the computational domain.
We have used simulated annealing algorithm [2] for this opti-
mization.

2 Grid Generation Problem

Without any loss of generality, we discuss the specific formu-
lation we have used for our problem of structured quadrilat-
eral grid generation on four-sided trimmed surface patch both
for ease of explanation and for the relevant examples.

Commonly the computer models of geometric entities are
composed of multiple surface patches. To generate a grid on
the entire surface of the entity, it is first decomposed into mul-
tiple topological regions [10]. Each such region is a trimmed
surface patch. A trimmed surface patch is typically obtained
by intersection of surfaces. The region on the parametric do-
main corresponding to the trimmed surface patch is further
modeled topologically as being four-sided, for structured grid
generation.

As of now, this topological decomposition and four-sided re-
gion specification must be manually done in most CAD sys-
tems. Grid points are first distributed on the boundaries of
four-sided patches. The task is now to generate a suitable grid
on each patch.

uv-domain
3D physical domain

Figure 1: Patch boundaries are concave and not aligned with
isoparametric curves

We note the following aspects of this problem:

� The boundary curves of the trimmed patch may not be

aligned with the isoparametric curves of the surface on
which the patch is identified. (see Figure 1)

� The shape of the boundary curves on the trimmed patch
as seen on the parametric domain may lead to a concave
shape.

These observations imply that firstly, it is non-trivial to obtain
a grid such that all the grid points lie inside the domain and
the elements are valid; secondly improvement of surface grid
to achieve properties like smoothness, orthogonality while
maintaining a valid grid is difficult.

In the following sections, we present our technique for gen-
eration of structured grid on an arbitrary four-sided patch and
its optimization and adaptation for desired properties.

3 Reparameterization of Patch

We look for a parameterization such that the square domain is
topologically identical to the trimmed region in the ��� -space.
This implies one-to-one correspondence between boundary
points and interior points. A further desirable quality of a
parameterization is near-linearity in the mapping between the
square domain and the four-sided patch on the surface. As
already mentioned earlier, the traditional method of transfinite
interpolation (Coons’ patch) suffers from the fact that it does
not guarantee this one-to-one correspondence. Various other
reparameterization schemes have therefore been reported in
the literature. Eck et al [3] use an approximation of harmonic
maps for reparameterizing triangulated surfaces. Floater [5]
discusses length-preserving and shape-preserving parameter-
izations of triangulated surface for generating smooth approx-
imations.

In this section, we describe the reparameterization scheme
used by us for mapping of grid points from a convenient
parametric domain to the surface patch to be sampled.

3.1 Algorithm for Reparameterization

Given:
1. Biparametric surface of the form �	��

����������

������������� .

2. A four-sided trimmed patch, represented as a sequence of
four bounding curves intersecting and trimmed at four points
on the parametric domain, � �"!#����!#$ , � �&%'�(�)%*$ , �+� � �(� � $ , and�+��,�����,�$ , in counter-clockwise sense. Let us define the four
trimmed sides as -)! : from � �"!.����!($ to � �&%'���)%#$ , -�% : from�+��%.���)%/$ to �+� � ��� � $ , - � : from � � � ��� � $ to � ��,0�(��,.$ , and -., :
from � ��,'�(��,�$ to � �"!*�(��!($ .
3. Distribution of points on the four sides of the patch, such
that, the number of points on the opposite sides is same (re-
quirement for structured grids).

Using the following steps we derive the reparameterization
for the domain described above:



Step 1: Construct a new square domain and let the parameters
in this1 domain be �324�(54$�67

�������"�8

������� . We assume a one-
to-one correspondence between the sides �92;:<�)$>= -0! ,�+5?:7�0$@=A-�% , �32B:C�/$D=E- � , �+5?:F�.$G=E-., ,

Step 2: Distribute points on the boundary of the 2)5 -domain
according to the arc-length distributions of points on the cor-
responding sides in ��� -domain.

Step 3: Consider the points of distribution on the sides in��� -domain in counter-clockwise sense; this gives us a simple
polygon. We triangulate this domain using Delaunay trian-
gulation algorithm [8], suitably extended to ensure that no
triangle is formed with all three points on a single edge. This
is necessary to ensure that we do not end up with degenerate
triangles in the 2)5 -domain in Step 4 below. The extension to
Delaunay triangulation is in the form of using edge swapping
to avoid such degeneracy, and if required, inserting interior
points.
Step 4: We use the connectivity information from the trian-
gulation in trimmed region of ��� -domain, and the boundary
distribution of 2)5 -domain to achieve a corresponding trian-
gulation in 2)5 -domain by reparameterization procedure of [5]
The procedure involves forming a system of linear equations
and solving them for the interior points in the new parametric
domain.

The above process will give triangles on the 2)5 -domain which
are equal in number as those on ��� -domain; and there is a
one-to-one correspondence between the triangles, edges and
vertices across the domains. Now, any point �924��54$ in 2)5 -
domain can be mapped onto the trimmed patch on ��� -domain
taking the following steps (see Figure 2):
Step a: Determine the triangle in 2)5 -domain in which the
given point �924��54$ lies. Let the vertices of the triangle be H�! ,H)% and H � .

new parametric
domain uv-domain physical domain

Figure 2: Two stage mapping of points from 2)5 -domain to the
trimmed surface patch

Step b: Determine the barycentric coordinates of the point�924��5�$ with respect to H ! , H % and H � ; as I ! , I % and I � .

Step c: Map the point onto the ��� -domain by using the
barycentric coordinates and the points of the corresponding
triangle in ��� -domain.

Here we have determined a parameterization for the trimmed
region on the ��� -domain, and effectively, for the patch on the
surface.

4 Initial Distribution of Points

We first distribute the points on the trimmed patch ensuring a
valid grid, but without worrying about the quality of the grid.
The parametric domain for this process will be the newly
derived 2)5 -domain. Valid elements on 2)5 -domain are guaran-
teed to be valid elements on the trimmed patch. We generate
the initial distribution in this domain and improvement of the
grid will be done by moving points in this domain.

In case of structured grids, the opposite sides of the four-sided
domain have equal number of grid points, and the connectivity
of the grid points is known in advance. The initial distribution
of points is achieved by joining grid lines between the corre-
sponding points on the opposite sides (see Figure 2). The grid
points are then taken to be the intersections of the grid lines
so drawn.

Note that these grid points are mapped to the surface via ��� -
domain by making use of the reparameterization described
in the previous section. This distribution may start us off
with a poor quality grid on the trimmed patch in ��� , but it is
improved in the second phase.

5 Optimization of Surface Grid

In this section we describe the modeling of objective function
used for grid optimization and the solution method for obtain-
ing the optimal values for grid point positions. But first, we
briefly identify the optimization objectives and analyze the
existing methods for grid optimization.

5.1 Earlier Grid Optimization Methods

The qualities we optimize in the surface grids are:

Smoothness: the distance between the adjacent grid-lines
should not change suddenly.

Orthogonality: the angle made by grid-lines meeting at all
vertices should be close to J0�)K .
Adaptivity: the process of grid generation should be control-
lable by specifying the desired density function at different
parts in the physical domain.

In the literature we find a few methods for optimizing sur-
face grids using iterative methods. The Laplacian smoothing
[4] method moves each grid point to centroid of its neigh-
boring points. Achieving high quality grids while ensuring
validity of grid elements has been a known problem with this
method. Also, unless the initial grid is reasonable, the iterative
procedure of Laplacian smoothing tends to get trapped in a
local minimum that most often does not correspond to a desir-
able grid. The grid smoothing algorithm discussed by TzuYi
Yu and Bharat Soni in [15] does not address issues of grid
generation over arbitrary trimmed patches or of element va-
lidity problems and does not model the objectives mentioned



above. The method reported by Li [16] minimizes the sum of
the squaresL of the chord-lengths between the connected grid
points. A limitation of this method is that the chords across
highly curved regions will completely ignore the curved fea-
tures of the surface of interest. The method works only when
(a) the surface is flat enough, or (b) the initial sampling is
performed densely. The above methods either do not have
safeguards to ensure valid grids or have not been designed
to handle trimmed surface patches. The CFD community has
been traditionally addressing smoothing of meshes using the
Elliptic Grid Generation method that formulates the above ob-
jectives in the form of Euler-Lagrange equations [14]. These
are then solved as elliptic differential equations. The literature
mostly discusses use of elliptic solvers for smoothing planar
grids. However, the formulation gets very complex for arbi-
trary four-sided patches on parametric surfaces and workable
methods for solving them have yet to be derived.

5.2 Formulation of the Objective Function

The design variables in the grid optimization problem are the
grid points on 2)5 -domain. Note that there are twice as many
variables in the system as the number of interior grid points.
We formulate an energy function that models the properties of
smoothness, orthogonality and adaptivity, such that the energy
function with minimum value provides most desirable surface
grid.

We model smoothness in distance between grid points along
grid-lines by formulating a term that captures the sum of the
squares of the arc-lengths of grid-lines on the surface patch.
The smoothness term is then stated as:M"NPO KQKSR+T :CUV�W�XZY V � []\�^._`-/a�b'c(d�� -�$Q$ % (1)

where, e is the set of all edges of elements of the surface
grid and the function [�\�^/_`-.a�b�c(df�+-�$ returns the arclength of
the edge computed along the surface. The factor Y V indicates
the density of the grid point distribution on the surface patch.
A large value for Y V would shorten the edge in the grid for the
minimum value of

MgN O KhKSR T , and a small value of the factor
will stretch the edge on the surface. This factor is specified
for adaptive point distribution.

The orthogonality term (
M K i�R+T.K ) in the energy function is for-

mulated as the sum of the squares of dot products of the vectors
obtained at the intersection of the grid lines at the grid points.

The two terms mentioned above have been weighted and com-
bined to form the objective function for the optimization pro-
cedure. M :j^ N M N O KhKkR+Tml ^ K M K i�R+T/K (2)

5.3 Our Solution Method

We have used Goffe’s implementation (called SIMANN) [9]
of Simulated Annealing algorithm described in [2] for global

optimization of multi-modal non-linear objective functions.

The algorithm takes a vector x (with nf!#�/o`o`o`��n�p as its compo-
nents) to be optimized for the minimum value of the objective
function qf� x $ . One specifies the upper and lower bounds for
ranges of the variables n�r to localize and accelerate the search.
This stochastic algorithm does extensive search of the solution
space in order to find the optimum values for x.

One has to provide an initial approximate solution, bounds
for the variables and an objective function which is called by
SIMANN internally. We have tuned the parameters of this
code for our application.

6 Results
Figure 3 shows an example of improvement in smoothness
and orthogonality at intersections of grid lines on trimmed
patch over a bi-parametric surface.

Figure 3: Structured grid on a trimmed four-sided patch before
and after smoothing.

7 Conclusions and Future Work

The generation of high quality grids on complex surface com-
ponents of engineering bodies has been a problem of interest
in the fields of computer graphics, CAGD and the different en-
gineering analysis areas. The earlier proposed solutions work
for a number of cases, but fail to generate high quality grids



in many cases, since they work on local optimization of grids
to ensure validity.

This paper has presented a two phase technique consisting of
derivation of a reparameterized domain which is used for the
mapping of grid points and the use of simulated annealing
for optimizing the grid to obtain desired properties. The two
phase method has been implemented and results of one ex-
ample have been presented. Because of the use of a simple
square domain, ensuring validity of the grid in any stage of
the grid generation process is very simple and does not im-
pose any additional computational burden when using global
optimization technique.

We have an efficient implementation of the first phase of the
algorithm. While the quality of grid is as desired and control
over the properties is explicitly modeled, the method needs
acceleration in the second phase. Simulated annealing re-
quires computation of objective function to be very efficient.
Our immediate efforts are towards design of a simple objec-
tive function that adequately models the objectives and is still
computationally efficient.

References

[1] E Cohen, T Lyche, and R Riesenfeld. Discrete b-splines
and subdivision techniques in computer aided geometric
design and computer graphics. Computer Graphics and
Image Processing, 14(2):87–111, 1980.

[2] A. Corana and et al. Minimizing multimodal functions
of continuous variables with the simulated annealing al-
gorithm. ACM Transactions on Mathematical Software,
13(3):262–280, Sept 1987.

[3] Matthias Eck, Tony DeRose, Tom Duchamp, Hugues
Hoppe, Michael Lounsbery, and Werner Stuetzle. Mul-
tiresolution analysis of arbitrary meshes. In SIG-
GRAPH’95, pages 173–182, 1995.

[4] David A. Field. Laplacian smoothing and Delaunay
triangulations. Comm. Applied Numer. Meth., 4:709–
712, 1988.

[5] Michael S. Floater. Parameterization and smooth ap-
proximation of surface triangulation. Computer Aided
Geometric Design, 14:231–250, 1997.

[6] Lori Freitag and Carl Ollivier-Gooch. The effect of mesh
quality on solution efficiency. In Proceedings of the 6th
International Meshing Roundtable, October 1997.

[7] Farin G. Curves and Surfaces for Computer Aided Ge-
ometric Design. Academic Press, New York, 1988.

[8] Holmes D. G. and Snyder D. D. The generation of
unstructured triangulation meshes using delaunay trian-
gulation. In S Sengupta et al, editor, Numerical Grid
Generation in Computational Fluid Mechanics 1988.
Pineridge Press, 1988.

[9] Goffe, Ferrier, and Rogers. Global optimization of sta-
tistical functions with simulated annealing. Journal of
Econometrics, 60(1):65–100, January – February 1994.

[10] S. Gopalsamy, T.S. Reddy, Dinesh Shikhare, and S.P.
Mudur. A comprehensive approach to grid generation
over complex piecewise parametric surfaces. In T S
Mruthyunjaya, editor, International Conference on Ad-
vances in Mechanical Engg, pages 17–29, Bangalore,
India, December 1995.

[11] Mudur S. P. and Koparkar P. A. Interval methods for
processing geometric objects. IEEE Computer Graphics
and Applications, 4(2):7–17, 1984.

[12] Gopalsamy S, T.S. Reddy, Dinesh Shikhare, and S.P.
Mudur. ZEUS Theoretical Manual – Phase III. NCST,
Bombay, 1994.

[13] X Sheng and B E Hirsch. Triangulation of trimmed
surfaces in parametric space. Computer-Aided Design,
24(8):437–444, 1992.

[14] J.F. Thompson, Z.U.A. Warsi, and C.W. Mustin. Numer-
ical Grid Generation: Foundations and Applications.
North-Holland, Amsterdam, 1985.

[15] TzuYi Yu and Bharat Soni. Application of NURBS in
numerical grid generation. Computer-Aided Design,
27(2):147–157, February 1995.

[16] Li S Z. Adaptive sampling and mesh generation. Com-
puter Aided Design, 27(3):235–240, March 1995.

About the Authors
Dinesh Shikhare, MS, is a scientist with the Graphics & CAD

division of National Centre for Software Technology (NCST),
Mumbai. His current activities include development of a CAD

package for aircraft surface modeling, surface/volume grid
generation and visualization.

S. Gopalsamy, PhD, is a research scientist with the Graphics
& CAD division of NCST. His research interests include geo-
metric modeling, grid generation, FEM and computer graphics.
Currently he is a visiting scholar at Hong Kong University of
Science and Technology (gopal@cs.ust.hk).

S. P. Mudur, PhD, is associate director of NCST and head
of Graphics & CAD division. His research interests include
geometric modeling, global illumination and image synthe-
sis, physically based modeling and visualization, multimedia
virtual reality environments, multi-lingual text processing.

The authors can be reached at the address mentioned on the
title page of this paper.


