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Abstract

This paper describes an interactive aircraft surface engineering and grid generation system Zeus, that has been
developed and one that has evolved with actual use over the last decade. Zeus is an interactive system for the design,
specification and visualization of aircraft geometries. The package supports surfaces defined in a number of repres-
entations including planes, spheres, cylinders, bilinear surfaces, NURBS and triangulated surfaces. It includes fairly
sophisticated geometric editing and rendering operations. It derives its main strength from the fact that it includes
a comprehensive suite of tools for surface and volume grid generation and their visualization. During these ten years of
development, there have been a number of innovative computational techniques and algorithms that have been devised,
implemented and tested. This paper is primarily about the Zeus system and these new innovative techniques. ( 1999
Elsevier Science Ltd. All rights reserved.
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1. Background

Zeus is an interactive system for the design, specifica-
tion and visualization of aircraft geometries. The system
incorporates a comprehensive suite of tools that gives
facilities for surface modeling, surface grid generation
and volume grid generation. These are basic require-
ments for CFD analysis and iterative design of complex
systems like aircrafts. Zeus has multiple methods for
creation of curves and surfaces. The package supports
surfaces defined in a number of representations including
planes, spheres, cylinders, bilinear surfaces, NURBS and
triangulated surfaces. It includes fairly sophisticated geo-
metric editing and rendering operations. It derives its

main strength from the fact that it includes a compre-
hensive suite of tools for surface and volume gridding
and their visualization. It provides robust geometric al-
gorithms such as surface—surface intersection, projection
of points/curves onto surfaces, surface tessellation and
tetrahedralization. Zeus also has an effective user inter-
face for easy access to the functionality of such a tool set.
The system is a culmination of about a decade’s sustained
development work toward geometric modeling and grid
generation of both trimmed surfaces and volumetric
spaces. Early developments were reported in [1, 2]. Dur-
ing these ten years of development, there have been a
number of innovative computational techniques and algo-
rithms that have been devised, implemented and tested.

Over the last two decades there have been many com-
mercial systems dealing quite effectively with doubly
curved surface geometries [3—6]. The aircraft industry
needs have been one of the major driving forces. More
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Fig. 1. Model of usage: surface modeling, surface grid generation and volume grid generation.

and more mathematical techniques continue to be evol-
ved for dealing efficiently and with increasingly complex
surface shapes and configurations. Most commercial
systems are general purpose and try and cater to the
requirements of a large number of different engineering
user groups. The systems are large, complex and expen-
sive. However, not many of them include specific
methods for grid generation and analysis. Such systems
expect that the surface geometries would be suitably
exported to separate grid generation programs. The need
for Zeus arose out of the requirement that a single system
should be able to deal with surface specification and also
with grid generation facilities.

From its inception it was clear that the development of
Zeus would be a continuing effort. Hence a number of
design goals were kept in mind over all these years. These
are listed below and over the years we have found that
they have helped ensure the life of Zeus for such a long
time.

1. Application specific: It caters specifically to the air-
craft surface geometry, i.e., the mathematical repres-
entations, parametric limits, specification and editing
operations, user-interface terminology, visual feed-
back mechanisms and storage structures are deter-
mined with aircraft surfaces in mind.

2. Robustness: Efficient and proven mathematical
techniques have to be incorporated. Correctness and
robustness of the algorithms are of definite importance.

3. Effective user-interface: Designed to be able to quickly
edit, visualize, discretize the surface geometry.

4. Scalability: Implemented with appropriate data struc-
tures that can deal with increase in geometric compo-
nents. Volumetric grids can typically include hundreds
of thousands of tetrahedra.

5. Extensibility: Desired with a well-defined geometric
kernel that can be easily extended to support newer
geometries.

6. Import/export of data to other complementary pack-
ages: Supports interoperability with other commercial
CAD/CAE packages in use for similar user domains.

7. ºse of good software engineering principles: Should
not be very dependent on the designers or implemen-
tors at any later stage.

2. Model of usage

The primary goal of Zeus being surface and volume
grid generation for CFD analysis of aircraft geometry,
the intended model of usage would typically have the
form described below (see Fig. 1).
f Surface Modeling: Surface geometry is either imported

from packages like CATIA or is constructed from
section curves by lofting a surface or is defined by
control points. Zeus uses B-spline curves and surfaces
for modeling surface geometry. Once a surface is con-
structed in the system by any of the above techniques,
it can be edited by editing its control mesh.

To generate surface grids on the surface patches of
interest, the surfaces must be intersected and trimmed
against each other or against planes to clip away the
unwanted parts of the modeled surfaces. The trimmed
regions so formed are used for surface grid generation.

f Surface grid generation: Once surface patches of inter-
est for grid generation are identified, two distinct ap-
proaches are available for surface grid generation.
They are ‘‘Paneling’’ and ‘‘Topology-based’’ grid gen-
eration. We briefly describe them here:

1. Paneling: Grid generation by paneling proceeds
by taking planar sections of the surface configuration.
Usually parallel set of planes is used for obtaining
intersection curves. These curves are trimmed to ob-
tain composite curves describing the ‘‘outer profile’’ of
the aircraft geometry. These section curves are
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Fig. 2. Free point and types of constrained points.

discretized by distributing equal number of points
along each curve. A mesh is constructed by joining
corresponding points across adjacent curves.

2. ¹opology-based methods: These methods obtain
a topological identification of ‘‘faces’’ over the surfaces
in the given geometry. These faces are bounded by
‘‘edges’’ which may be surface boundaries or intersec-
tion curves or isoparametric curves. These edges are
discretized by distributing points over them using
some clustering function. Given a face with each of its
bounding edges discretized, Zeus has two types of grid
generation methods:

f Structured quadrilateral grid generation: If the given
face is four-sides and the number of points on the
opposite edges is equal, then such a face forms a suit-
able candidate for structured quadrilateral grid. The
interior points are distributed to obtain as much
orthogonality at grid-line intersections and as much
smoothness of arclength and area gradients as
possible.

f ºnstructured surface triangulation: This class of grid
generation methods can handle faces bounded by
more than four sides and arbitrary number of points
distributed on the bounding edges of the faces. The
face identified over the 3D surface geometry is tri-
angulated with constraints such as aspect-ratios and
density. Zeus has Delauanay-based as well as advanc-
ing front algorithms implemented for direct surface
triangulation.

f »olume grid generation: Triangulated surface
geometry is used to obtain a tetrahedral decomposi-
tion of space around it. For example, triangulated
aircraft geometry may be placed in a huge triangulated
sphere. Surface grids generated over individual patches
are composited to form a closed mesh by patching
holes and gaps, if needed. The space bounded by the
outer sphere surface and the inner aircraft geometry
forms the region of interest for tetrahedral decomposi-

tion for CFD analysis. Zeus implements Delaunay-
based volume grid generation method. This grid must
contain the vertices, edges and faces of the bounding
surface grids.

3. Zeus entities and operations

The entities and algorithms implemented in Zeus can
be broadly classified in the following categories: (a) ge-
ometry, (b) topology, (c) surface grids and (d) volume
grids. In the following subsection, we give a detailed
description of the entities in each category along with the
operations supported on each of the entities.

3.1. Geometry

As mentioned in the previous section, 3D geometry
component of Zeus consists of points curves, cluster-
graphs, surfaces, planes and algorithms associated with
them. For each kind of geometry entity, standard opera-
tions like creation, editing, archival and drawing function-
ality is built into the classes that encapsulate these entities.

1. Point: A 3D point in Zeus is either (a) a control point
(also called a free point) used to define a higher-level
entity such as a curve, a surface or a plane; or (b) a con-
strained point that lies on a curve or a surface. A free
point has three degrees of freedom in space, whereas,
a constrained point’s freedom is constrained by its under-
lying entity (see Fig. 2). A constrained point on a curve
has only one degree of freedom and that on a surface has
two degrees of freedom. However, these degrees of free-
dom may be further reduced by additional constraints.

Constrained points can have multiple representations
across underlying entities. For example, a constrained
point generated by the intersection of a curve and a sur-
face has two representations: one on the curve and the
other on the surface (each representation has a pointer to
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Fig. 3. Free curves, trimmed curves, composite curves and constrained curves.

the underlying entity and position of the point with
respect to the entity, i.e. the parameter values).

Constrained points are generated by intersection of
curves, surfaces, or by projection of points on these
higher-level entities.

2. Curves: Zeus supports free curves with B-spline [7]
representation, constrained curves (curves constrained to
lie on surfaces) represented using composite 2D Béziers
[8] (2D since they are defined in terms of (u, v) para-
meters on surface). In addition to these, trim curves and
composite curves are supported (see Fig. 3).

B-spline curves implemented are not limited in terms
of their order or number of control points. The sequence
of control points is formed using free points described
above. B-splines of order 2 are used to create and re-
present piecewise linear curves (PLCs). B-splines are
constructed either by using control points or by interpo-
lation through a given sequence of points. B-splines are
represented using control points, knot vector and a flag
that indicates whether it is open or closed. These curves
are also called ‘‘free curves’’ since they are not con-
strained to lie on any underlying entity that constrains
the degrees of freedom.

Constrained curves are obtained via the following dif-
ferent operations:

(a) surface—surface intersection (SSI),
(b) plane—surface intersection,
(c) projection of a curve on a surface, and
(d) extraction of iso-parametric curves.
The first three operations in the above list generate

constrained curve representations in the form of
composite Bézier curves. Whereas iso-parameter curves
can be represented simply by a pointer to the underlying
surface, direction of parameter and parameter value.
Constrained curves can have multiple representations on
different underlying entities.

Trim curves are required to represent parts of curves
that are modeled or obtained by intersection operation.
They are represented by a pointer to the underlying

curve, and parametric bounds t
1

and t
2
. Composite

curves are composed by connecting multiple curves with
some user-defined continuity requirements.

3. Surfaces: The types of surfaces supported in Zeus
are: (a) B-spline surface, (b) triangulated surface, (c) trim
surface and (d) composite surface (see Fig. 4).

B-spline surfaces are represented in terms of control-
point mesh, knot vectors for u and v directions and two
flags indicating whether the surface is open or closed in
either direction. B-spline surfaces are created using a spe-
cification of a control mesh, orders of polynomials in
either directions and the open/closed flags. They can also
be constructed by lofting a surface through a sequence of
B-spline curves.

Zeus also incorporates triangulated surface repres-
entation for handling surfaces that are captured and
imported as triangulations.

Trim surface is constructed by identifying a
sequence of trimming curves in a specific orientation.
The region bounded by trimming curves is the trim
surface. Composite surfaces are constructed by a set of
surfaces connected at their boundaries (trimmed or
otherwise) to satisfy some user-defined continuity
criterion.

Numerous operations are implemented using surfaces:
(a) surface—surface intersection,
(b) projection of a point on surface,
(c) projection of a curve on surface, and
(d) planar sections of a surface [9].
4. Plane: A plane is used in Zeus for taking planar

sections of surfaces. It is represented by a position vector
and a normal direction. User specifies a plane either via
mouse interactions or by specifying the coefficients of the
plane equation. Various other creation operations are
supported such as construction of a sequence of planes
parallel to a given plane and a sequence of planes be-
tween two planes.

5. Cluster Graph: Cluster graph is basically a function
of the form y"f (s) where y denotes the cluster
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Fig. 4. Types of surfaces in Zeus.

Fig. 5. Different point distributions along a boundary curve of the wing geometry and the corresponding cluster graphs. (a) is the
original curve and the clustering are shown in (b)—(e).

factor and s the arc length parameter of an edge
or a curve segment. The cluster graph is interpreted
as follows:

If N is the total number of points to be distributed
along an edge and the arc length parameter s of the edge
varies from, say, 0 to ¸, then the number of points along
the edge from s

1
to s

2
is given by

N*
:s2
s1

f (s) ds

:L
0

f (s) ds
.

Fig. 5 shows different point distributions on a curve
specified by different cluster graphs.

3.2. Topology

The entire surface of a complex body is defined as the
union of surface patches, each surface patch being a trim-
med portion of a B-spline surface or any parametric
surface. The topological break up has to be such that
there are no overlapping patches — that is, any two
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Fig. 6. Hierarchical structure of NMG data-structure.

Fig. 7. Trim curves across surfaces for creating panels.

distinct patches are either disjoint or share a vertex or
share one or more edges.

In order to deal with complex surfaces like an aircraft
surface, an efficient data structure is necessary to exactly
define and validate a composite surface and for sub-
sequent analysis and maintenance. For this, we have
implemented the nmg data structure of [10] which is
a generalization of the so-called radial edge data struc-
ture [11]. This is referred to as the topological model of
the composite surface.

In the topological model (see Fig. 6) a composite sur-
face is called a shell and a surface patch is called a face.
A face is bounded by one or more closed loops of edges.
A shell is at the top of the following hierarchy of
topological entities [10]:

A shell is composed of faces; a face is defined by one or
more loops (bounding curves) over an underlying surface;
a loop is formed by a connected sequence of edges; an
edge is defined by two vertices and an underlying curve;
a vertex is defined by a point.

3.3. Surface tessellation by paneling

A grid generated by paneling is called a mesh. From
now on we follow this terminology in the rest of this
paper. The procedure of mesh generation by paneling is
outlined below stepwise.
1. Take sections of a surface by intersecting it with a se-

quence of planes or with other surfaces (see Fig. 7).
2. Discretize the section curves or parts of section curves

by computing sequences of points on them. On each
curve (or part of it), the computed points can be
uniformly distributed or clustered according to a
cluster graph. A discretized section curve is called
a Polygonal Mesh Curve (PMC). A PMC is stored as
a separate entity in ZEUS. So, a PMC is a piecewise
linear curve whose vertices are constrained to lie on
a section curve.

3. Take an ordered sequence of PMCs, all having the
same number of points. A panel is a four-sided region
(quadrilateral) defined by its vertices. A panel formed
by four vertices A, B, C, D is denoted by (A, B, C, D).
From the given PMCs, form panels by joining adjac-
ent points as follows (see Fig. 7):

Let there be m PMCs having n points each. Let
MP

ij
N, 1)j)n be the n points on the ith PMC.

Join P
ij

and P
i`1,j

for 1)i)m!1 and 1)j)n.
Then (P

ij
, P

i`1,j
, P

i`1,j`1
, P

i,j`1
) for 1)i)m!1

and 1)j)n!1 are the panels which are ob-
tained from the given sequence of PMCs.
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Fig. 8. Structured grid by paneling over a complex surface
geometry.

Fig. 9. Structured grid on wing surface and clustering function
for distribution of boundary points.

4. A mesh is a collection of panels. So, a mesh is nothing
but a quadrilateral grid. In Zeus a mesh is stored as
a separate entity. By the above steps 1—3, we obtain
a mesh over the given surface by collecting all the
panels created in step 3.

5. A mesh covering a complex geometry defined by
a composite surface is obtained by merging different
meshes defined over different parts of the geometry
(see Fig. 8).
While orthogonality, uniformity and smoothness con-

straints are not taken into account in technique and many
operations need to be done manually, this is a powerful
tool especially in places where other algebraic methods fail
to give acceptable structured quadrilateral grids.

3.4. Surface grid generation

Once the topological model of the composite surface is
created, grid generation is done in three steps:

1. Compute grid points over the edges. Clustering of grid
points over an edge can be specified by a cluster graph
(see Fig. 9).

2. Over each face (surface patch), create structured or
unstructured grid corresponding to the already com-
puted grid points on the edges of that patch. This
ensures the requirement that adjacent patches have
the same grid points along their common edges.

3. The grid over the whole shell (composite surface) is
obtained as the union of the grids over all the com-
ponent faces.

3.4.1. Edge grid
Edge grid points can be uniformly or non-uniformly

distributed over the edge. This entity is represented by

a pointer to a topological edge, pointer to a cluster graph
and number of points on the edge grid.

3.4.2. Face grid
A face grid is a collection of quadrilateral or triangular

regions called elements such that:
1. The union of all the elements is the whole face
2. Intersection of any two elements is any of the following:

s empty;
s a node (corner point) of an element;
s an element-edge common to both the elements.

3. All nodes of elements should lie on the underlying
surface of the face.

3.4.3. Structured face grid
A face grid is said to be structured if the following

conditions are satisfied:
1. The face is defined by a single loop having four edges.
2. Number of grid points on the two pairs of opposite

edges are same, say m and n.
3. The grid is defined by an m]n array of points MP

i, j
N,

1)i)m, 1)j)n such that, the first row of points lie
on the first edge, last row on third edge, first column on
fourth edge and the last column on second edge.

4. The elements of the grid are the quadrilaterals with
nodes MP

i,j
, P

i`1,j
, P

i`1,j`1
, P

i, j`1
N where 1)i)m

!1, 1)j)n!1, so that the total number of ele-
ments " (m!1) * (n!1).

To be useful for CFD analysis, structured quadrilateral
grids must satisfy qualitative requirements: (a) smooth-
ness: the gradient of distances between successive
grid points on the grid-lines should be smooth,

D. Shikhare et al. / Computers & Graphics 23 (1999) 59—72 65



Fig. 10. Grids over topological identification of faces over surface geometry.

(b) orthogonality: grid-lines meeting at vertices should be
orthogonal as far as possible. Often it is hard to achieve
these qualities across the entire surface grid generated
over trimmed surface patches. This is because the trim-
med patch may not be aligned with the isoparametric
curves of the surface on which the patch is identified, and
also the shape of the boundary curves on the trimmed
patch as seen on the parametric domain may lead to
a concave shape (Fig. 10).

3.4.4. Unstructured face grid
A face grid which is not structured is called an unstruc-

tured face grid. Unstructured face grids are defined over
faces of non-rectangular topology, that is, faces having
3 edges or more than four edges and also over faces of
rectangular topology when one does not want equal
number of points on opposite edges.

Zeus has implementations of extended Delaunay tri-
angulation method [12] and advancing front algorithm
[13] for direct surface triangulation. These implementa-
tions are described in the next section.

3.4.5. Shell grid
Union of face grids on all faces that form a shell gives

us a shell grid. A shell grid usually refers to a grid on
complete surface geometry of a system like an aircraft or
a car body.

3.5. Tetrahedral volume grid generation

Having obtained surface grid for the entire surface
geometry, the next logical step toward CFD analysis is to
obtain a volume grid. Zeus incorporates Delaunay-based
tetrahedral volume grid generation tool.

The problem of grid generation can be stated as:

Given a bounded volume defined in terms of oriented
triangulated surfaces, the volume grid generation
problem is to decompose the volume into tetrahedral

elements such that the union elements spans the given
volume and intersection of any two tetrahedra is
either null or a vertex or an edge or a triangular face
shared between them. Such a mesh is also required to
contain the triangles of the meshes defining the
boundary of the volume.

The following facilities are built into this part of the
package:
1. Composition of volume: Surface grids generated

over topological faces of geometric model can be
merged along boundaries to compose a closed
triangulated surface. If the triangulated model
has holes or gaps, then they are patched by local
triangulation or by collapsing the gaps. Such a
completely closed shape may then be placed in a
triangulated enclosure such as a huge sphere, a cylin-
der with closed ends or a box. Such a volume with
multiple connected components must be consistently
oriented to identify the bounded volume for tetrahed-
ral discretization (see Fig. 11).

2. ¹etrahedral decomposition: A Delaunay-based algo-
rithm for tetrahedral grid generation of the volume
observes the following constraints:
s Initial triangulated boundary is always a part of the

final tetrahedral grid. That is, all vertices, edges and
triangles are a part of the set of tetrahedra gener-
ated.

s Quality of the desired grid is specified in terms of
aspect ratio of tetrahedral elements and smoothness
of volume gradients along any line considered with-
in the bounded region.

3. Smoothing: A modified Laplacian smoothing algo-
rithm is implemented for smoothing tetrahedral grids.
This smoother consists of a local operator that
modifies the position of an interior vertex. This oper-
ator tries to move the vertex to the centroid of its
neighborhood. If the dihedral angles of tetrahedra con-
nected to this vertex are distributed more uniformly
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Fig. 11. Composition of volume.

Fig. 12. Tetrahedral volume grid.

than earlier and this new local configuration is valid,
then it is retained; otherwise the change is undone for
that vertex. This operator is iteratively applied to all
interior vertices (Fig. 12).

3.5.1. Grid representation
To represent the tetrahedral volume grid, we use

radial-edge data structure. This is different from that

used to identify higher-level surface topology of ge-
ometry. The aim of this data structure is to facilitate fast
updation and querying of variable and fixed cardinality
relationships in the grid. Examples of fixed cardinality
relationships in a tetrahedral grid are: an edge owns two
vertices; a triangle owns three edges; a face is shared by at
most two tetrahedra; etc. Examples of variable cardinal-
ity relationships are: a vertex may be shared by many
edges, triangle and tetrahedra; an edge may be radially
shared by multiple triangles; and so on. A hierarchical
relationship between grid vertices, edges, triangles and
tetrahedra is illustrated in Fig. 13.

4. Innovative algorithms and techniques

Many new algorithmic contributions have been in the
course the development of this package. We outline them
in this section.

4.1. Compact geometric bounds

We have given a new method to estimate the max-
imum deviation of a curve segment from the line joining
its end points [14]. If f : [0, 1]PR3 is an nth degree
polynomial curve with 2)n)9, and if F (u) is the per-
pendicular distance of f (u) from the line joining f (0) and
f (1), then

max
0)u)1

DF(u)D)C
n~1
+
i/1

DF (u
i
)D2D

1@2
,
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Fig. 13. Radial-edge data-structure for tetrahedral volume grids.

where u
i
, 1)i)n!1, are pre-computed fixed para-

meter values (golden points) independent of the poly-
nomial curve f. This determines the linearity of a curve
segment and is used in subdivision algorithms for prob-
lems such as point inversion and curve—curve inter-
section. The above method has also been extended to
rational polynomial curves and polynomial surface
patches.

4.2. Optimal choice of parameter values for
interpolation

Given a sequence of points Q
i
, 1)i)n, in R3 and,

optionally, tangent directions ¹
i
and curvature values i

i
,

the problem is to find a parametric curve f : [a, b]PR3

such that

f (u
i
)"Q

i
, f @(u

i
)"a

i
¹

i
, f @@(u

i
)"b

i
¹

i
#a2

i
i
i
N

i
,

for some parameter values u
i
in [a, b] and a

i
, b

i
in R,

1)i)n; N
i
is the principal normal vector at Q

i
. a

i
and

b
i
are known as shape parameters [15]. The choice of

values for the parameters u
i
, a

i
, and b

i
will affect the

shape of the resulting interpolation curve [16, 17]. In
order to obtain fair curves, we have added the following
energy minimization constraint to the above interpola-
tion problem:

Minimize E ( f )"P
b

a

E f (r) (u)E2du ,

by varying u
i
, a

i
, and b

i
in the interpolation problem.

f (r) is the rth order derivative of f. For r"1, 2 and 3,
E( f ) can be considered as a measure of arc length,
curvature and rate of change of curvature, respectively.
It is found that with r"1, one gets very taut curve
while with r"2 or 3, one gets smooth and rounded
curves.

4.3. Planar sections

We represent a planar section of a B-spline surface by
its pre-image, a trim curve, in the 2D parametric domain
of the surface. The trim curve is computed as a 2D
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Fig. 14. Unstructured grid generated by advancing front
method directly on the s surface.

composite Bézier curve with G1 or G2 continuity. This is
done in two steps [9]:
1. Compute a sequence of exact intersection points in 3D

lying on a net of iso-parametric curves and get the
corresponding points in the 2D parametric domain.

2. Between any two adjacent points in the parametric
domain, fit a Bézier curve which minimizes the inte-
gral of the square deviation of the corresponding
curve on the surface from the intersecting plane.

4.4. Two-phase technique for structured grid
generation

Structured quadrilateral grid generation over arbitrary
trimmed patch is a difficult problem due to the quality
and validity constraints. We have developed a two-phase
algorithm [18] which has the following phases: (a) Rep-
arameterization of trimmed four-sided surface patch for
obtaining a convenient computational domain. This new
parameterization is used for obtaining an initial grid as
well as for subsequent phase. (b) Grid optimization
phase: in this phase, an objective function is obtained in
terms of quality metrics from the surface, which when
minimized gives most desirable grids.

4.5. Advancing front method directly on the surface

The standard advancing front procedure [19, 20] can
be extended to generate grids directly over curved surfa-
ces [13]. We have implemented this method to generate
unstructured grids over trimmed parametric surface
patches. The procedure involves the following steps:
1. Form the initial front by taking the grid points of the

boundary defining the surface patch. These are 3D
points lying on the surface.

2. Select one of the edges of the front as the current edge.
One can select the shortest edge as the current edge.

3. Compute a trial point lying on the surface such that it
forms an equilateral triangle with the current edge.
This is done as follows:
s Compute the tangent plane of the surface at the mid

point of the current edge and select the point on the
tangent plane which forms an equilateral triangle
with the current edge and lies on the proper side of
the edge.

s Project this point on to the surface. This projected
point can be perturbed locally to obtain a trial point.

4. Check if the trial point forms a valid triangle with the
current edge and also does not lie near any existing
vertex or edge. If the trial point is suitable then it is
chosen as the forming vertex; otherwise, one of the
existing nearby vertices which forms the most valid
triangle with the current edge is chosen as the forming
vertex.

5. Form the new triangle consisting of the current edge
and the forming vertex.

6. Update the front — the current edge and any other
edge of the new triangle which is in the front are
removed from the front and other edge(s) of the new
triangle are added to the front.

7. Goto step 2 if the front is not empty.
The computationally difficult steps in the above pro-

cedure are getting the trial point, which involves projec-
tion, and the validity check. For validity check, it is useful
to keep the 2D parameter values of the vertices, because
one can do validity check in the parametric domain and
quality check in the physical domain. Fig. 14 is an
example of a grid generated by this method.

4.6. Extended Delaunay algorithm for surface grid
generation directly over the physical domain

We have implemented an extended Delaunay proced-
ure which is applied directly on the physical domain of
the surface. The algorithm we have extended is the edge
swapping algorithm for 2D Delaunay triangulation [21].
The outline of our procedure, the details of which are
given in [22], is as follows:
1. Compute an initial triangulation in the parametric

domain and map it onto the surface.
2. For each edge in the parametric domain, compute the

arc-length of its image on the surface. Assign this
arc-length as the length of the edge.

3. Perform edge swapping procedure [21] using these
arc-lengths as the lengths of the edges.

4. Make a list of edges whose arc-lengths are more than
a precomputed estimate of edge arc-length on the
surface around that location.

5. Take the edge of maximum arc-length in the list and
call it the current edge.

6. Compute a suitable point on the surface lying on the
image arc of the current edge and compute its
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Fig. 15. Delaunay triangulation directly on the surface.

Fig. 16. Triangulation over a composite surface.

pre-image in the parametric domain. This is the new
point to be inserted.

7. Insert this new point and replace the two triangles
sharing the current edge by four triangles having the
new point as one of their vertices.

8. Recompute the triangulation by edge swapping —
again using the arc-lengths on the surface instead of
edge lengths in the parametric domain.

9. Update the list of edges and goto Step 5 if the list is
nonempty.
Note that here also we have followed the principle —

valid triangulation structure in the parametric domain
and quality evaluation in the physical domain. The grid
in Fig. 15 is generated by this algorithm. Fig. 16 is an
example of grid generated on a composite surface.

4.7. Generic grid smoothing on the surface

The well-known ¸aplacian smoothing procedure [23] of
moving the interior grid points to the centroids of the
surrounding polygons can be extended to surface grid.
Since the grid points are constrained to lie on the surface,
the interior points are to be moved along the surface only.

We can implement this using local projections. For
this we assume that an interior grid point and the grid
points connected to it are nearly coplanar. The procedure
is as follows:

1. For each interior grid point compute and preserve the
indices of the grid points connected to it.

2. For each interior point:
(a) Get the connected grid points and compute the

best plane for these connected points and the in-
terior point.

(b) Project all of these points on to this plane.
(c) Move the projection of the interior point to the

centroid of other projected points in the plane.
Care has to be taken when the surrounding poly-
gon of these projected points is not convex. In that
case, the centroid of the kernel of the polygon can
be taken.

(d) Project back the new interior point onto the sur-
face

3. Repeat step 2 till a stable state is reached. In practice,
we have found that 5—10 iterations are sufficient to
reach a near-stable state.

4.8. Acceleration of tetrahedral volume grid generation

Numerous acceleration techniques have been imple-
mented in the tetrahedral volume grid generation
algorithm. The Delaunay-based algorithm relies on fast
spatial and connectivity queries for its speed. These
include querying for a point or set of points lying in
a specified spatial neighborhood, queries about topological
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neighborhood and sharing information between vertices,
edges, triangles, tetrahedra and meshes.

4.8.1. Octree
This spatial data-structure [24] is adopted to speed up

queries about spatial neighborhood. Insertion of every
new point in Delaunay-based algorithm requires deter-
mination of a list of tetrahedra in the neighborhood
whose circumspheres include the point. This search is
accelerated by the use of an octree of inserted grid points.
The octree inherently has a tendency to occupy large
space, and the growth must be arrested. We restrict its
growth up to a predetermined depth, and leaf nodes at
that depth are used as buckets for linear search. The choice
of depth of octree is determined by space—speed tradeoff.

4.8.2. Radial-edge data-structure
All entities in this data-structure are constructed out of

simplices. A 0-simplex is a vertex identified over a geo-
metric point in 3D; a 1-simplex is an edge between two
vertices; a 2-simplex is a facet constructed using three
edges; and a 3-simplex is a tetrahedron having four facets
(with 6 edges and 4 vertices).

Surface-grid is constructed using a collection of facets
forming a manifold surface. A volume is composed using
a collection of facets defining a closed manifold geometry.
A volume-grid is a collection of tetrahedra spanning
a given volume.

The organization of grid entities is as per Fig. 13.
The data structure implemented has been adapted from
the work reported by Muuss et al. [10] and Bruzzone
[25]. Entities are classified as top-level entities, compon-
ent entities, and auxiliary entities. Vertex, edge, facet
(triangle) and tetrahedron are termed as components
entities. Top-level entities are surface-grid, volume and
volume-grid are called top-level entities since the user is
exposed only to these entities. The auxiliary entities are
data structures used only by internal algorithms.

Vertex is the only entity that directly refers to a geo-
metric entity called Point. The other higher-level entities
only refer to each other using pointers. We first examine
what relationships exist in surface-grids and volume-grids,
and also note the cardinality of each of the relationships.

Vertex is the only entity that directly refers to a geomet-
ric entity called Point. The other higher-level entities only
refer to each other using pointers. We first examine what
relationships exist in surface-grids and volume-grids, and
also note the cardinality of each of the relationships.

The aim is capture the following relationships:
1. »ertex-edge: An edge is connected to exactly two

vertices (constant cardinality relationship), however,
a vertex may be connected variable number of edges,
depending on particular configurations of facets in
a surface-grid or tetrahedra in a volume-grid.

2. Edge-facet: A facet refers to exactly three edges, but
an edge may be referenced in many facets radially

connected to it (in case of volume-grid). In surface-
grid, however, at most two facets can be connected to
an edge.

3. Facet-tetrahedron: A tetrahedron refers to exactly
four facets, and in a tetrahedral volume-grid in 3D,
a facet may be associated with at most two tetrahedra.
Note that this association has a constant cardinality
both ways.

4. »ertex-facet, vertex-tetrahedron, edge-tetrahedron:
These relationships are ‘‘derived’’ relationships. The
relationships from tetrahedron to lower-level entities
in the hierarchy can be trivially derived through
traversals using pointers. The relationships in the op-
posite direction are captured using some auxiliary
entities since the cardinality is not constant.

Note that the constant cardinality relationships can be
trivially captured using fixed number of pointers to the
associated entities. The relationships such as: ‘‘edges con-
nected to a vertex’’ and ‘‘facets connected to an edge’’ are
modeled using special entities called VertexInstance and
EdgeInstance. A vertex keeps a list of VertexInstances,
each keeping a pointer to an edge using the vertex, thus
allowing a query such as ‘‘which edges are connected to
a given vertex?’’ Similarly, an edge keeps a list of Edge-
Instances, each keeping a pointer to the facet using that
edge. This mechanism allows us to capture the other
variable cardinality relationships like ‘‘which facets are
connected to a vertex?’’ and ‘‘which tetrahedra are con-
nected to an edge?’’ and so on.

5. Conclusion

Zeus is a system that was developed with a single
user group in mind and has been used extensively
by the user group. Close collaboration with the
user group and their inputs have enabled us to hone
the system and its functionality to suit to the user. Many
of the techniques that are built into Zeus are complex
and difficult to implement in a usable fashion. Grid
generation is hard and particularly when complex geo-
metric configurations like aircraft surfaces are involved.
Work on Zeus will continue. There are plenty of im-
provements required by the user — better response times,
grid adaptability, automatic CAD data repair, automatic
topology determination, volumetric grid visualization
techniques, etc.
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