
PERGAMON

An I W Joumal

computers &
mathematlcs
wlth q~Ik.~kxm

Computers and Mathematics with Applications 39 (2000) 193-197
www.eisevier.nl/locate/camwa

The Heap-Mergesort

R . A . C H O W D H U R Y , S . K . N A T H AND M . K A Y K O B A D
Department of Computer Science and Engineering

Bangladesh University of Engineering and Technology
Dhaka-1000, Bangladesh

kaykobad@buet, edu

(Received January 1999; accepted April 1999)

A b s t r a c t - - I n this paper, we present a new mergesort algorithm which can sort n(= 2 h+l - 1)
elements using no more than n log s (n + 1) - (13/12)n- 1 element comparisons in the worst case. This
algorithm includes the heap (fine heap) creation phase as a pre-processing step, and for each internal
node v, its left and right subheaps are merged into a sorted list of the elements under that node.
Experimental results show that this algorithm requires only n log2(n + 1) - 1.2n element comparisons
in the average case. But it requires extra space for n LINK fields. (~) 2000 Elsevier Science Ltd. All
rights reserved.

Keywords - -Me rge so r t , Fine heap, Heap-mergesort, Complexity.

1. I N T R O D U C T I O N

Heap is a very impor tan t da t a s t ructure frequently used in representing priori ty queues and

in algori thmic design problems [1-5]. Heapsor t a lgor i thm was in t roduced by Will iams [6] and
later modified by Floyd [7]. This modified algori thm requires 2n log 2 n - 2n compar isons to

sort n(= 2 h÷l - 1) elements. The most efficient heapsort variants so far are a pure in-place

a lgor i thm identified by Gu and Zhu [8] with at most n l o g 2 n + n logs(log 2 n) + O(n) element

comparisons, and a not-in-place variant based on fine-heaps by Carlsson et al. [9]. The fine-

heap can be implemented using n / 2 addit ional bits, and it can be used to sort n elements using

n log 2 n + 0.91667n element comparisons in the worst case. In comparison, previously identified

bound is given by n l o g 2 n + n [10,11].
Mergesort can sort n elements with at most nr log s n] - 2 fl°g2 n] + 1 comparisons using space

2n [12]. So mergesort is more efficient bu t uses much more space. I t should be noted t h a t

mergesor t can be implemented using links [2]. The best in-situ mergesort is due to Ka ta ja inen et
al. [13]. I t can sort n elements with at most n log s n + O(n) comparisons and ~n log s n element

t ransposi t ions.
In this paper, we present a mergesort a lgori thm based on merging heaps and use the concept

of fine-heaps and the improvement in the heap creation phase by Carlsson et al. [9] to achieve

n log2(n + 1) - (1 3 / 1 2) n - 1 element comparisons and O(n) element movements in the worst case.

The authors would like to thank the referees for helpful suggestions and comments. The authors also wish to
thank M. Murshed of the Australian National University for his support.

0898-1221/00/$ - see front matter (~) 2000 Elsevier Science Ltd. All rights reserved. Typeset by .A/~,~-TEX
PII: S0898-1221(00)00075-4

194 R.A. CHOWDHURY et al.

The proposed algorithm requires extra space for n LINK fields. Note that , the lower bound for
both the average and worst case number of comparisons of general (comparison-based) sorting
algorithms is log2(n!) ~ n log 2 n - 1.442695n.

2 . T H E H E A P - M E R G E S O R T A L G O R I T H M

In the preprocessing step of this algorithm, we need to create a heap with LINK fields. The
LINK field of each internal node will point to the smaller of its children if it has two children,
otherwise the LINK field will point to the left child. The LINK fields of the leaves will contain 0.
The heap creation process is identical to that used in creating fine-heaps [9] and requires the
same number of comparisons. But each of the LINK fields must be a word of size flog 2 n] + 1,
where n is the number of elements in the heap.

According to the property of fine heaps, we already know the smallest and the next larger
element of the entire heap. So if we assume that the two subheaps of the root node (each with
2 h - 1 elements, where n -- 2 h+l - 1 is the total number of elements in the heap) are already
sorted, the only thing that remains to get the sorted list of all the elements of the heap is to merge
two sorted lists with 2 h - 2 and 2 h - 1 elements, respectively. The two subheaps have already

been sorted using the same procedure and this process is continued recursively until we reach a
heap with three elements. To eliminate recursion we may apply the merging process bottom-up
starting from the [n/2Jth element of the heap and continuing up to the root. The pseudo-code

of the algorithm is given in Figure 1.

procedure H E A P . . M E R G E _ S O R T (A , LINK, n)
/ / A [1 : n] is the array of the elements to be sorted in nondecreasing order. / /
/ / A f t e r the sorting phase A[1] will contain the smallest element of the a r r a y , / /
/ / L I N K [l] will point to the 2 nd smallest element, LINK[LINK[l]] to the 3 Td, / /
/ /LINK[LINK[LINK[1]]] to the 4 th, etc. / /

e l e m e n t _ t y p e All : n]
i n t e g e r i, n, LINK[0 : n]

/ / W e assume the existence of the following routine based on the works of//
/ /Carlsson et al. [9]/ /
cal l CREATE_FINE_HEAP_WITH_LINKS(A, LINK, n)

for i +- [n/2J t o 1 b y - 1 do
i f (LINK[i]mod 2 = 1)

/ / T h e following routine is exactly the same as the MERGE1 rou t ine / /
/ /described on page 120 of [2] which umes n, A[I: n] and LINK[0: 1//
/ / t o be global. / /
call LINK_MERGE(LINK[LINK[i]], 2 * i, LINK[2 * i + 1])

else
i f (2 . i + l _<n)

cal l LINK_MERGE(LINK[LINK[i]], 2 • i + 1, LINK[2 • i])
endi f

e n d i f
r e p e a t

end H E A P _ M E R G E _ S O R T

Figure 1. The heap-mergesort algorithm.

The Heap-Mergesort 195

3. N U M B E R O F E L E M E N T C O M P A R I S O N S A N D M O V E M E N T S

For a heap with n = 2 h+l - 1 elements each of the two subheaps of the root node has 2 h - 1

elements. We know that the element at the root is the smallest element of the heap. According
to the property of fine heaps the LINK field of the root element points to the smaller of its two
children. Hence, we already know the smallest and the next larger element of the heap. Let us
assume that the two subheaps are already sorted and the next larger element is the root of the left
(right) subheap. So, if we merge the 2 h - 2 sorted elements (excluding the root) of the left (right)
subheap with the 2 h - 1 sorted elements of the right (left) subheap, we will get a sorted list of all
the elements of the heap. This merging step requires (2 h - 2) + (2 h - 1) - 1 = 2 h+l - 4 = n - 3
element comparisons in the worst case. The final three elements are sorted according to the
property of fine heaps.

Hence, the total number of element comparisons required during the merging phase is given by

C(n)=(n-3)+2C('~2 1)

=(n-3)+(n-7)÷22C(T2 3)

=(n-3)+(n-7)T(n-15)÷23C(T3 7)
= [(n + l) - 2 2] + [(n + l) - 2 3] + [(n + l) - 2 4] + . . . + [(n + l) - 2 re+l]

2m C ,(n -- (2 m2 m -- 1)) +

= m(n + 1) -- 22 (1 + 2 + 22 + . . . + 2 m- l) + 2mc(3)

[n-(2m-1)]
assuming 2m - 3 =~ m = log2(n + 1) - 2

=m(nq-1)--2 2 (2 m - 1 ~
k, 2 - 1] ÷2m(0)

= m(n + 1) -- 2 m+2 + 4

--- [log2(n + 1) - 2] (n ÷ 1) - (n + 1) ÷ 4

= nlog2(n + 1) - 3n + log2(n + 1) + 1.

A fine heap can be created using at worst only (23/12)n-log2(n+l)-2 element comparisons [9].
By including this heap creation cost, therefore, the worst case number of comparisons required

by the algorithm is found to be

23
nlog2(n ÷ 1) - 3n ÷ log2(n T 1) + 1 + ~ n - log2(n + 1) - 2

13
= nlog2(n + 1) - ~-~ n - 1 =~ nlog2(n + 1) - 1.083n - 1.

The number of element movements in the heap creation phase will not exceed O(n) and there is no
element movement during the merging phase. Hence, the overall number of element movements

will remain O(n).

4. E X P E R I M E N T A L R E S U L T S

In Table 1, we present the average number of comparisons for the algorithm presented in
this paper along with that obtained for the classical mergesort algorithm. For each n, the
result is the average of that for 100 iterations on random data set. "Heap-Mergesort 1" denotes
the heap-mergesort algorithm which uses the straight forward method of creating fine-heaps
(using 2n - log2(n + 1) - 1 element comparisons in the worst case [9]) and "Heap-Mergesort 2"

196 R.A. CHOWDHURY et al.

denotes the heap-mergesort algorithm which uses the improved method of fine-heap creation [9].

It should be noted here that both "Mergesort" and "Heap-Mergesort 1" have similar worst case

complexity (n log 2 n - n + O (1)) whereas "Heap-Mergesort 2" is better (n log 2 n - (1 3 / 1 2) n + 0 (1))

in the worst case.

Table 1. Average number of comparisons required by Mergesort and Heap-Mergesort.

n : 2 h+l - 1 Mergesort Heap-Mergesort 1 Heap-Mergesort 2

1023 8935 8928 8947

2047 19922 19917 19951

4095 43967 43926 43999

8191 96130 96051 96197

16383 208648 208505 208793

The results show that for n = 2 h+l - 1, "Heap-Mergesort 1" requires fewer comparisons than

that in "Mergesort" and "Mergesort" requires fewer comparisons than that in "Heap- Mergesort

2". This occurs because the heap creation phase of "Heap-Mergesort 2" is designed for per-
forming better in the worst case, not on the average while that of "Heap-Mergesort 1" performs

better in the average case. For example, "Heap-Mergesort 2" requires exactly 28 comparisons

for creating three fine heaps of size 7 each, whereas "Heap-Mergesort 1" can do the same using

fewer comparisons on the average.

Even "Heap-Mergesort 1" will require slightly higher number of comparisons on the average
if n is not near or equal to 2 h+l - 1. This is because linear-merge is optimal for merging lists

with equal or almost equal number of elements. If the heap is not full then in some merging

steps the two subheaps to be merged will not have equal or nearly equal number of elements. For

nonfull heaps, however, the number of comparisons may be reduced by modifying this algorithm

appropriately to be able to use the concept of minimum comparison merging [14].

5. C O N C L U S I O N

In this paper, we have introduced a new variant of the mergesort algorithm with a better worst

case behavior than that of the classical one. The worst case number of comparisons required by

this algorithm is less than that of the traditional algorithm by about 0.083n comparisons and is

only 0.34n comparisons off from the theoretic lower bound. However, for the reasons given in

Section 4, this improvement will not be reflected in its average case behavior, though in that case

a nonsignificant improvement over the classical mergesort algorithm can be achieved by choosing
appropriate techniques for heap creation and merging.

R E F E R E N C E S
1. A.V. Aho, J.E. Hopcroft and J.D. Ullman, The Design and Analysis of Computer Algorithms, Addison-

Wesley, Reading, MA, (1974).
2. E. Horowitz and S. Sahni, Fundamentals of Computer Algorithms, Galgotia Publications Pvt. Ltd., New

Delhi, (1995).
3. D.E. Knuth, The Art of Computer Programming, Vol. IIl: Sorting and Searching, Addison-Wesley, Reading,

MA, (1973).
4. K. Mehlhorn and A. Tsakalidis, Data structures, In Handbook o] Theoretical Computer Science, (Edited by

J. van Leeuwen), Ch. 6, pp. 301-241, Elsevier, The Netherlands, (1990).
5. H. Noltemeier, Dynamic partial orders and generalized heaps, Computing (Suppl.) 7, 125-139, (1990).
6. J.W.J. Williams, Algorithm 232, CACM 7 (6), 347-348, (June 1964).
7. R.W. Floyd, Algorithm 245, Treesort, CACM 7 (12), 701, (December 1964).
8. X. Gu and Y. Zhu, Optimal heapsort algorithm, Theoretical Computer Science 163, 239-243, (1996).
9. S. Carlsson, J. Chen and C. Mattsson, Heaps with bits, Theoretical Computer Science 164, 1-12, (1996).

10. C.J.H. McDiarmid and B.A. Reed, Building heaps fast, Journal of Algorithms 10, 352-365, (1989).
11. I. Wegener, The worst case complexity of McDiarmid and Reed's variant of BOTTOM-UP HEAPSORT is

less than nlogn + 1.1n, Information and Computation 97, 86-96, (1992).

The Heap-Mergesort 197

12. K. Mehlhorn, Data Structures and Algorithms, 1: Sorting and Searching, Springer Verlag, Heidelberg, (1984).
13. J. Katajainen, T. Pasanen and J. Teuhola, Practical in-place mergesort, Nordic Journal of Computing 3,

27-40, (1996).
14. F.K. Hwang and S. Lin, A simple algorithm for merging two disjoint linearly ordered sets, SIAM J. Computing

1, 31-39, (1972).

