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A b s t r a c t - - I n  this paper, we present a new mergesort algorithm which can sort n(= 2 h+l - 1) 
elements using no more than n log s (n + 1) - (13/12)n- 1 element comparisons in the worst case. This 
algorithm includes the heap (fine heap) creation phase as a pre-processing step, and for each internal 
node v, its left and right subheaps are merged into a sorted list of the elements under that node. 
Experimental results show that this algorithm requires only n log2(n + 1 ) -  1.2n element comparisons 
in the average case. But it requires extra space for n LINK fields. (~) 2000 Elsevier Science Ltd. All 
rights reserved. 

Keywords - -Me rge so r t ,  Fine heap, Heap-mergesort, Complexity. 

1. I N T R O D U C T I O N  

Heap is a very  impor tan t  da t a  s t ructure  frequently used in representing priori ty queues and 

in algori thmic design problems [1-5]. Heapsor t  a lgor i thm was in t roduced by Will iams [6] and 
later modified by Floyd [7]. This  modified algori thm requires 2n log 2 n - 2n compar isons  to  

sort  n(= 2 h÷l - 1) elements. The  most  efficient heapsort  variants so far are a pure in-place 

a lgor i thm identified by Gu  and Zhu [8] with at  most  n l o g  2 n + n logs( log  2 n) + O(n)  element 

comparisons,  and a not-in-place variant  based on fine-heaps by Carlsson et al. [9]. The  fine- 

heap can be implemented using n / 2  addit ional  bits, and it can be used to  sort  n elements  using 

n log 2 n + 0.91667n element comparisons in the worst case. In  comparison,  previously identified 

bound  is given by n l o g  2 n + n [10,11]. 
Mergesort  can sort  n elements with at  most  nr log s n] - 2 fl°g2 n] + 1 comparisons  using space 

2n [12]. So mergesort  is more efficient bu t  uses much more space. I t  should be noted t h a t  

mergesor t  can be implemented using links [2]. The  best  in-situ mergesort  is due to  Ka ta ja inen  et 
al. [13]. I t  can sort n elements with at most  n log s n + O(n)  comparisons and ~n log s n element 

t ransposi t ions.  
In  this paper,  we present a mergesort  a lgori thm based on merging heaps and use the  concept  

of  fine-heaps and the  improvement  in the heap creation phase by Carlsson et al. [9] to  achieve 

n log2(n + 1) - ( 1 3 / 1 2 ) n -  1 element comparisons and O(n) element movements  in the worst  case. 
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The proposed algorithm requires extra space for n LINK fields. Note that ,  the lower bound for 
both the average and worst case number of comparisons of general (comparison-based) sorting 
algorithms is log2(n! ) ~ n log 2 n - 1.442695n. 

2 .  T H E  H E A P - M E R G E S O R T  A L G O R I T H M  

In the preprocessing step of this algorithm, we need to create a heap with LINK fields. The 
LINK field of each internal node will point to the smaller of its children if it has two children, 
otherwise the LINK field will point to the left child. The LINK fields of the leaves will contain 0. 
The heap creation process is identical to that  used in creating fine-heaps [9] and requires the 
same number of comparisons. But each of the LINK fields must be a word of size flog 2 n] + 1, 
where n is the number of elements in the heap. 

According to the property of fine heaps, we already know the smallest and the next larger 
element of the entire heap. So if we assume that  the two subheaps of the root node (each with 
2 h - 1 elements, where n -- 2 h+l - 1 is the total number of elements in the heap) are already 
sorted, the only thing that  remains to get the sorted list of all the elements of the heap is to merge 
two sorted lists with 2 h - 2 and 2 h - 1 elements, respectively. The two subheaps have already 

been sorted using the same procedure and this process is continued recursively until we reach a 
heap with three elements. To eliminate recursion we may apply the merging process bottom-up 
starting from the [n/2Jth element of the heap and continuing up to the root. The pseudo-code 

of the algorithm is given in Figure 1. 

procedure  H E A P . . M E R G E _ S O R T ( A ,  LINK, n) 
/ / A [ 1  : n] is the array of the elements to be sorted in nondecreasing order. / /  
/ / A f t e r  the sorting phase A[1] will contain the smallest element of the a r r a y , / /  
/ / L I N K [ l ]  will point to the 2 nd smallest element, LINK[LINK[l]] to the 3 Td, / /  
/ /LINK[LINK[LINK[1]]]  to the 4 th, etc. / /  

e l e m e n t _ t y p e  All : n] 
i n t e g e r  i, n, LINK[0 : n] 

/ / W e  assume the existence of the following routine based on the works of// 
/ /Carlsson et al. [9]/ /  
cal l  CREATE_FINE_HEAP_WITH_LINKS(A, LINK, n) 

for  i +- [n/2J t o  1 b y  - 1  do  
i f  (LINK[i]mod 2 = 1) 

/ / T h e  following routine is exactly the same as the MERGE1 rou t ine / /  
/ /described on page 120 of [2] which  umes n, A[I: n] and LINK[0: 1// 
/ / t o  be global. / /  
call  LINK_MERGE(LINK[LINK[i]], 2 * i, LINK[2 * i + 1]) 

else 
i f ( 2 . i + l  _<n) 

cal l  LINK_MERGE(LINK[LINK[i]], 2 • i + 1, LINK[2 • i]) 
endi f  

e n d i f  
r e p e a t  

end H E A P _ M E R G E _ S O R T  

Figure 1. The heap-mergesort algorithm. 
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3.  N U M B E R  O F  E L E M E N T  C O M P A R I S O N S  A N D  M O V E M E N T S  

For a heap with n = 2 h+l - 1 elements each of the two subheaps of the root node has 2 h - 1 

elements. We know that  the element at the root is the smallest element of the heap. According 
to the property of fine heaps the LINK field of the root element points to the smaller of its two 
children. Hence, we already know the smallest and the next larger element of the heap. Let us 
assume that  the two subheaps are already sorted and the next larger element is the root of the left 
(right) subheap. So, if we merge the 2 h - 2 sorted elements (excluding the root) of the left (right) 
subheap with the 2 h - 1 sorted elements of the right (left) subheap, we will get a sorted list of all 
the elements of the heap. This merging step requires (2 h - 2) + (2 h - 1) - 1 = 2 h+l - 4 = n - 3 
element comparisons in the worst case. The final three elements are sorted according to the 
property of fine heaps. 

Hence, the total number of element comparisons required during the merging phase is given by 

C(n)=(n-3)+2C('~2 1) 

=(n-3)+(n-7)÷22C(T2  3) 

=(n-3)+(n-7)T(n-15)÷23C(T3  7) 
= [ ( n + l ) - 2 2  ] +  [ ( n + l ) - 2 3  ] + [ ( n + l ) - 2 4  ] + . . . +  [ ( n + l ) - 2  re+l] 

2m C ,(n -- (2 m2 m -- 1) ) + 

= m(n + 1) -- 22 (1 + 2 + 22 + . . .  + 2 m- l )  + 2mc(3) 

[ n-(2m-1) ] 
assuming 2m - 3 =~ m = log2(n + 1) - 2 

=m(nq-1)--2 2 ( 2 m - 1 ~  
k, 2 - 1  ] ÷2m(0)  

= m(n + 1) -- 2 m+2 + 4 

--- [log2(n + 1) - 2] ( n ÷  1) - (n + 1) ÷ 4  

= nlog2(n + 1) - 3n + log2(n + 1) + 1. 

A fine heap can be created using at worst only (23/12)n-log2(n+l)-2 element comparisons [9]. 
By including this heap creation cost, therefore, the worst case number of comparisons required 

by the algorithm is found to be 

23 
nlog2(n ÷ 1) - 3n ÷ log2(n T 1) + 1 + ~ n -  log2(n + 1) - 2 

13 
= nlog2(n + 1) - ~-~ n - 1 =~ nlog2(n + 1) - 1.083n - 1. 

The number of element movements in the heap creation phase will not exceed O(n) and there is no 
element movement during the merging phase. Hence, the overall number of element movements 

will remain O(n). 

4.  E X P E R I M E N T A L  R E S U L T S  

In Table 1, we present the average number of comparisons for the algorithm presented in 
this paper along with that  obtained for the classical mergesort algorithm. For each n, the 
result is the average of that  for 100 iterations on random data  set. "Heap-Mergesort 1" denotes 
the heap-mergesort algorithm which uses the straight forward method of creating fine-heaps 
(using 2n - log2(n + 1) - 1 element comparisons in the worst case [9]) and "Heap-Mergesort 2" 
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denotes the heap-mergesort algorithm which uses the improved method of fine-heap creation [9]. 

It  should be noted here that  both "Mergesort" and "Heap-Mergesort 1" have similar worst case 

complexity (n log 2 n - n + O ( 1 ) )  whereas "Heap-Mergesort 2" is better (n log 2 n - ( 1 3 / 1 2 ) n + 0 ( 1 ) )  

in the worst case. 

Table 1. Average number of comparisons required by Mergesort and Heap-Mergesort. 

n : 2 h+l - 1 Mergesort Heap-Mergesort 1 Heap-Mergesort 2 

1023 8935 8928 8947 

2047 19922 19917 19951 

4095 43967 43926 43999 

8191 96130 96051 96197 

16383 208648 208505 208793 

The results show that  for n = 2 h+l - 1, "Heap-Mergesort 1" requires fewer comparisons than 

that  in "Mergesort" and "Mergesort" requires fewer comparisons than that  in "Heap- Mergesort 

2". This occurs because the heap creation phase of "Heap-Mergesort 2" is designed for per- 
forming better in the worst case, not on the average while that  of "Heap-Mergesort 1" performs 

better in the average case. For example, "Heap-Mergesort 2" requires exactly 28 comparisons 

for creating three fine heaps of size 7 each, whereas "Heap-Mergesort 1" can do the same using 

fewer comparisons on the average. 

Even "Heap-Mergesort 1" will require slightly higher number of comparisons on the average 
if n is not near or equal to 2 h+l - 1. This is because linear-merge is optimal for merging lists 

with equal or almost equal number of elements. If the heap is not full then in some merging 

steps the two subheaps to be merged will not have equal or nearly equal number of elements. For 

nonfull heaps, however, the number of comparisons may be reduced by modifying this algorithm 

appropriately to be able to use the concept of minimum comparison merging [14]. 

5. C O N C L U S I O N  

In this paper, we have introduced a new variant of the mergesort algorithm with a better worst 

case behavior than that  of the classical one. The worst case number of comparisons required by 

this algorithm is less than that  of the traditional algorithm by about 0.083n comparisons and is 

only 0.34n comparisons off from the theoretic lower bound. However, for the reasons given in 

Section 4, this improvement will not be reflected in its average case behavior, though in that  case 

a nonsignificant improvement over the classical mergesort algorithm can be achieved by choosing 
appropriate techniques for heap creation and merging. 

R E F E R E N C E S  
1. A.V. Aho, J.E. Hopcroft and J.D. Ullman, The Design and Analysis of Computer Algorithms, Addison- 

Wesley, Reading, MA, (1974). 
2. E. Horowitz and S. Sahni, Fundamentals of Computer Algorithms, Galgotia Publications Pvt. Ltd., New 

Delhi, (1995). 
3. D.E. Knuth, The Art of Computer Programming, Vol. IIl: Sorting and Searching, Addison-Wesley, Reading, 

MA, (1973). 
4. K. Mehlhorn and A. Tsakalidis, Data structures, In Handbook o] Theoretical Computer Science, (Edited by 

J. van Leeuwen), Ch. 6, pp. 301-241, Elsevier, The Netherlands, (1990). 
5. H. Noltemeier, Dynamic partial orders and generalized heaps, Computing (Suppl.) 7, 125-139, (1990). 
6. J.W.J. Williams, Algorithm 232, CACM 7 (6), 347-348, (June 1964). 
7. R.W. Floyd, Algorithm 245, Treesort, CACM 7 (12), 701, (December 1964). 
8. X. Gu and Y. Zhu, Optimal heapsort algorithm, Theoretical Computer Science 163, 239-243, (1996). 
9. S. Carlsson, J. Chen and C. Mattsson, Heaps with bits, Theoretical Computer Science 164, 1-12, (1996). 

10. C.J.H. McDiarmid and B.A. Reed, Building heaps fast, Journal of Algorithms 10, 352-365, (1989). 
11. I. Wegener, The worst case complexity of McDiarmid and Reed's variant of BOTTOM-UP HEAPSORT is 

less than nlogn + 1.1n, Information and Computation 97, 86-96, (1992). 



The Heap-Mergesort 197 

12. K. Mehlhorn, Data Structures and Algorithms, 1: Sorting and Searching, Springer Verlag, Heidelberg, (1984). 
13. J. Katajainen, T. Pasanen and J. Teuhola, Practical in-place mergesort, Nordic Journal of Computing 3, 

27-40, (1996). 
14. F.K. Hwang and S. Lin, A simple algorithm for merging two disjoint linearly ordered sets, SIAM J. Computing 

1, 31-39, (1972). 


