
A LINGUISTICALLY SORTABLE BENGALI CODING SYSTEM
AND ITS APPLICATION IN SPELL CHECKING: A CASE STUDY

OF MULTILINGUAL APPLICATIONS

M. MANZUR MURSHED and SYED M. RAHMAN
Gippsland School of Computing & Information Technology, Monash University

Gippsland Campus, Churchill VIC 3842, Australia

M. KAYKOBAD
Department of Computer Science and Engineering, Bangladesh University of

Engineering and Technology, Dhaka-1000, Bangladesh

1 INTRODUCTION

In the last decade, the use of Bengali scripts in daily computer usage has gained wide
acceptance in Bangladesh. Although a wide range of commercial Bengali software have been
developed so far to meet the ever-growing demand in the local market, a systematic and scientific
efforts of integrating Bengali in modern computing systems remains in its infancy. One of the most
important issues related to Bengali computing is to sort Bengali texts in order of linguistic order.

Sorting Bengali words is not same as sorting English words in ASCII. There are a number of
coding schemes available in the market. Although Bangladesh Standards and Testing Institution [1]
has recently standardized a coding scheme to be used in all future Bengali text processing, the other
existing coding schemes are likely to dominate for a few more years because of the availability of
popular commercial software. Unlike English, Bengali letters can take more than one forms and two or
more letters are sometimes combined into compound characters. Although a coding scheme should
assist in both displaying characters as well as sorting texts efficiently, all of the available Bengali
coding schemes, including the standard one, have placed emphasis more on displaying Bengali texts as
close as possible to the actual forms.

It was surprising to learn that no Bengali coding scheme was available which could sort Bengali
texts in complete linguistic order until we have recently proved in [2] that no completely linguistically
sorted Bengali coding scheme exists. In [2], we have further introduced an internal coding scheme, in
addition to the primary coding scheme, to provide a linguistically sortable Bengali coding system. The
internal coding scheme is made linguistically sortable by avoiding all the compound characters and
introducing some artificial half-characters to compensate that. The compound letters of the primary
scheme is supported by providing non-lossy transformation from the primary coding scheme to the
internal scheme and vice versa.

Rahman and Iqbal [3] have recently developed a very similar sorting algorithm using lossy
transformation from the primary coding scheme to the internal scheme. The difference between lossy
and non-lossy transformations lies on the fact that the later transformation is reversible, i.e., non-lossy
transformation can also be used to convert a word from the internal coding scheme to the primary
coding scheme.

By developing an inter-scheme text conversion utility, we have established in [2] that use of
non-lossy transformation instead of lossy transformation for sorting Bengali texts in linguistic order
has some extra benefit. In this paper we discuss another very important application of non-lossy
transformation by developing an efficient spell checking application for Bengali texts based on the
internal coding scheme with non-lossy transformation. As usual, the handling of compound letters

remains the key area where a Bengali text speller differs from its counterparts in other languages. Here
we establish that using of the internal coding scheme in designing the dictionary and developing
suggestion generating search engine not only provides a spell checking solution which is independent
of any specific primary coding scheme but also assists in designing layered solution for efficient
modularization and maintenance of coding.

This paper is organized as follows. In the next section we present the basic properties of
Bengali script. For the sake of completeness, some results and algorithms on sorting Bengali texts in
linguistic order, developed in [2], are given in Section 3. In Section 4 we discuss various issues of
developing an efficient primary coding scheme independent spell checking application based on our
solution to linguistically sorting Bengali texts. Section 5 concludes the paper.

2 PROPERTIES OF BENGALI SCRIPT

Bengali alphabet is divided, like most languages, into vowels and consonants. Like many South
Asian languages, all of the vowels in Bengali have two forms. The selection of forms depends on the
purpose of using a vowel in a word. If a vowel sounds independently, the principal form of that vowel
is used and if a vowel guides the sound of a consonant (or a group of consonants), a different form of
that vowel is used. Let this non-principal forms of vowels be called the half-vowels. Among the half-
vowels some are written on the left (left-biased) and some are on the right (right-biased) of the
associated consonants. There are a few half-vowels which are written in two parts – one part on the left
and the other part on the right of the associated consonants. Let these half-vowels be called the both-
biased half-vowels. Both left-biased and both-biased half-vowels not only make Bengali unique among
the South Asian languages but also create many problems, as revealed in the next section, while
introduced to computing systems.

Like many Asian languages, two or more consonants can be grouped together to form a
compound consonant. A compound consonant is not always just the juxtaposition of the group of
consonants in their principal forms. By introducing one or two different forms of some consonants
besides the principal form, it is possible to display a number of compound consonants by
concatenation. Let these non-principal forms of consonants be called the half-consonants. But this
technique of using half-consonants will not work to display a few compound consonants that have no
resemblance with the group of consonants they represent. In such cases, a distinct letter has to be used
which also demands distinct position in the alphabet.

3 SORTING BENGALI TEXTS IN LINGUISTIC ORDER

Sorting plays significant role, both explicitly and implicitly, in every text processing systems.
When a language is introduced to a computing system, the letters of that language are given specific
numerical codes to represent them into the system. A list of these numerical codes is known as the
coding scheme of that particular language, e.g., ASCII is one of the English coding schemes. A coding
scheme includes all forms of letters so that it can be used to display text in the exact way it is usually
written, e.g., ASCII includes both the upper-case and the lower-case English letters. It is thus obvious
that a Bengali coding scheme must include not only the principal letters but also all the half-vowels
and the compound consonants.

A huge number of coding schemes can be defined for a particular language, if representation of
letters into the computing system is the only concern. But that is not the case in general. In fact a
coding scheme forms the base knowledge for any computing system to sort texts. Most of the
computing systems sort texts according to the collating sequence of the codes in the coding scheme.
The users of a computing system never bother how the system performs sorting; what they care most is
that sorted texts produced by the system follow linguistic order of the language. The task of sorting
texts linguistically can be extremely simplified if the collating sequence of the coding scheme either
follow the linguistic order completely or embed rules so that the linguistic order can be derived from
the partially ordered scheme. This significantly reduces the number of possible coding schemes for a
particular language. Although it is possible to define completely linguistically ordered English coding
scheme, ASCII is a partially linguistically ordered set and relies on mapping upper case letters to the
lower case ones, or vice versa, for producing linguistic (case insensitive) sorting of English texts.

There are two problems associated with defining a completely linguistically ordered Bengali
coding scheme. First, a left-biased half-vowel or the left part of a both-biased half-vowel appears one
or more positions ahead of its actual linguistic position. Second, a compound consonant that is
represented by a distinct letter in the coding scheme actually represents two or more consonants. Any
of the above two problems is enough to reject the existence of any completely linguistically ordered
Bengali coding scheme. So, we can define, at best, a partially linguistically ordered Bengali coding
scheme.

With a partially ordered coding scheme, the problem with left-biased and both-biased half-
vowels can be overcome by using the fact that the actual position of a left-biased or the left part of a
both-biased half-vowel can be calculated by checking the consonant to the right of it. If the consonant
is a non-compound consonant or a compound consonant with distinct form, the half-vowel should be
moved only one position to the right so that it is now positioned just after the consonant. If the
consonant is a compound consonant that is formed by concatenation of two or more half-consonants,
the half-vowel should be moved to right two or more positions so that it is now positioned just after the
last half-consonant.

The above solution to handle left-biased and both-biased half-vowels need no extra information
and therefore, can be considered as an embedded rule for a partially linguistically ordered coding
scheme.

Unfortunately the problem with compound consonants with distinct position in the partial
coding scheme cannot be solved without adding extra information to the scheme. To achieve complete
linguistic order every compound consonant with distinct position must be replaced by its component
consonants in any forms and there is no way to guess the components of a compound consonant simply
from the coding scheme itself. To sort Bengali texts in linguistic order we must incorporate
information regarding the components of the compound consonants.

In the long absence of a standard Bengali coding scheme, a number of different coding schemes
gained market shares. Although recently Bangladesh Standards and Testing Institution has defined the
Standard Bengali Coding Scheme [1], the non-standard coding schemes will still dominate the market,
for at least a few more years, because of the availability of popular software. So, our solution to sort
Bengali texts in linguistic order should not be confined with any specific coding scheme. One of the
possible methods to sort Bengali texts in linguistic order is discussed below:

This method works with any coding scheme. Here, we first create artificial half-consonants for
all the principal consonants. As pointed out in Section 2, a number of half-consonants are already
available in the coding scheme. So, we need to introduce artificial ones only for those consonants for
which no half-letter is available in the scheme. An internal coding scheme, in addition to the original

coding scheme, is defined which includes all forms of vowels, the principal consonants, and the half-
consonants and excludes all the compound letters. The internal coding scheme is defined in partially
linguistic order where each half-letter takes the position just after the corresponding principal letter.
The order of the primary coding scheme thus plays no role in sorting.

A non-lossy transformation is defined which replaces every compound letter with its component
half-consonants in sequence. This transformation uses a conversion table where compound letters of
the primary scheme are used as key and the concatenated half-consonant components of the compound
letters are stored in the second field. This transformation is called non-lossy as the original compound
letters can always be retrieved from the converted texts. It is obvious that different conversion tables
are required with different primary coding schemes.

Using a non-lossy transformation is not a necessary condition for deriving complete linguistic
order from a partially ordered scheme e.g., in ASCII if a upper case letter is converted to a lower case
one, the case information is lost unless a copy is retained. But having non-lossy property has some
extra benefits as the transformation can be used in both directions, converting text from primary coding
scheme to the internal coding scheme and vice versa. One of the applications is to convert Bengali
texts from one primary coding scheme to another primary coding scheme. The text is first converted
into the internal scheme from the first primary scheme by forward mapping, which is then again
converted into the second primary scheme using reverse mapping.

In the next section we discuss various issues of developing a Bengali spell checking utility
based on the above coding system. As the above coding system is independent of the primary coding
scheme, the spell checker should also be able to check spelling of Bengali texts written in any of the
available primary coding schemes.

4 SPELL CHECKING OF BENGALI TEXTS

A typical spell checking utility has two important components – a dictionary of words and a
search engine to generate suggestions for misspelt words. The spell checking of a text document is
done in the following way:

The text is scanned word by word, starting from the beginning. For each word in the text, it is
looked up in the dictionary. If the word is found in the dictionary, nothing needs to be done. But if the
word is not found in the dictionary, two things may happen. First, the word may be a correct word
which is not included in the dictionary (this suggests for a mechanism to add words in the dictionary).
Second, the word may indeed be a misspelt word. In both the cases, the search engine should be able
create new valid words, which differ from the original word slightly, as suggestions. These suggestions
should be presented in linguistic order so that a user can select quickly.

The design of a dictionary should consider not only storing of all the possible words in the
language in an efficient manner but also providing a way to look up whether a word is in the dictionary
extremely fast. Two of the popular data structures used in dictionary design are B+ trees and hash
tables.

Developing a spell checking utility, independent of primary coding scheme, also demands that
the word of the dictionary should not be stored in any particular primary coding scheme. We have two
options – either to keep separate dictionaries for each of the primary coding schemes or to keep a
scheme independent dictionary. If we consider the enormous size of a single dictionary that has to
include most of the words of a language, the second option must be the preferred one.

The strength of the internal coding scheme with non-lossy transformation of compound
consonants, developed for sorting Bengali texts in linguistic order, can again be realized when we use
this scheme to design a Bengali dictionary, independent of any specific primary coding scheme.
Checking of a word in any primary scheme is first converted into the internal scheme by forward
mapping. This converted word is then looked up in the dictionary. If the word is not in the dictionary,
the search engine then produces a number of suggestions in internal coding scheme. Each of these
suggestions is then converted back to the primary coding scheme using reversed mapping. Because of
this reverse mapping, the non-lossy transformation of compound consonants is essential.

Why should the suggestion generating search engine be primary coding scheme independent?
Before answering to this question we need to understand the underlying technique of generating
effective suggestions. Given a misspelt word, a set of words is generated by replacing a letter with
another one, by inserting a letter, by deleting a letter, and by swapping successive letters. All the words
in this set is very close to the misspelt word in the sense that difference between on of these words and
the misspelt word is within one or at most two characters. So, this set represents the very best
candidate for suggestion. The only problem with the set is that not all the words in it are valid. The
solution lies in looking up each of the words in this set in the dictionary, and retain only those as
suggestions which are found in the dictionary.

If the set of possible suggestions is generated in a specific primary scheme, each of these
possible suggestions needs to be converted into the internal coding scheme before looking at the
dictionary. This conversion is not necessary if the suggestion pool is generated in the internal coding
scheme. On the contrary, we do not need to convert the suggestions from the internal coding scheme
to a specific primary scheme, if the suggestions are already in primary coding scheme. But choosing a
primary coding scheme independent suggestion generator lies elsewhere. The number of possible
suggestions is much higher than that of actual suggestions. So, mapping time with primary scheme
independent solution is insignificant.

Besides this time efficiency, primary scheme independent solution also allows us to implement
the spell checking utility into two separate layers for better modularity and maintenance. The top layer
deals with all primary coding scheme dependent codes e.g., code conversions. This layer should not be
a new one. All the codes of our solution in sorting Bengali texts in linguistic order can be reused. The
bottom layer deals with all primary coding scheme independent codes e.g., the dictionary, the
suggestion search engine, and sorting of suggestions.

5 CONCLUSION

So far sorting Bengali texts in linguistic order remained a challenging task.. In [2], we have

shown for the first time that a completely linguistically ordered Bengali coding scheme does not exist.
By introducing an internal coding scheme along with the primary coding scheme and non-lossy
transformation from the primary coding scheme to the internal one and vice versa, we have further
developed an algorithm to sort Bengali texts in linguistic order. In this paper, we have discussed a
very significant added benefit to our solution of sorting in linguistic order. Here, we have presented
ideas of developing a spell checking utility for Bengali texts based on the internal coding scheme and
non-lossy transformation used in solving the sorting problem. A commercial spell checker, developed
by one of the author, based on the ideas presented in this paper is currently enjoying the lions share of
the local market. Because of the proprietary nature of this commercial product, we refrain from
detailing any implementation issues.

ACKNOWLEDGMENT

We wish to thank Rezwan Al Bakhtiar, A. T. M. Zakaria Swapan, Faisal Ahmed, and Badrul
Munir Sarwar for their valuable comments and suggestions.

REFERENCES

[1] Bangladesh Standards in Coding Bengali Alphabet. Bangladesh Standards and Testing Institution,

1996 (in Bengali).
[2] M. M. Murshed and M. Kaykobad. Linguistically Sorting Bengali Texts: A Case Study of

Multilingual Applications. Proceeding of the 9th International Conference of the Information
Resources Management Association, Boston, Massachusetts, USA, pp.795—797, 1998.

[3] M. S. Rahman and M. Z. Iqbal. Bangla Sorting Algorithm: A Linguistic Approach. Proceedings
of International Conference on Computer and Information Technology (ICCIT’98), Dhaka,
Bangladesh, pp.204—208, 1998

