
Available at 

www.ElsevierMathematics.com 
An lntemational Journal 

computers & 
,owaaaa .I I)CIILNCC 8 DIRCCT* mathematics 

with appllcatlons 
m Computers and Mathematics with Applications 46 (2003) 1581-1587 

www.elsevier.com/locate/camwa 

Block Huffman Coding 

M. ABDUL MANNAN AND M. KAYKOBAD 
Department of Computer Science and Engineering 

Bangladesh University of Engineering and Technology (BUET) 
Dhaka-1000, Bangladesh 
mannan-74c0hotmail. corn 

kaykobadQcse.buet.ac.bd 

(Received January 2001; revised and accepted December 2002) 

Abstract-Dynamic or adaptive Huffman coding, proposed by Gallager [1] and extended by 
Knuth [2], can be used for compressing a continuous stream. Our proposal for accomplishing the 
same task is termed here as block Huffman coding. This is an easy and simple solution to compress 
continuous data by applying simple Huffman coding in blocks of data. For each block, a different 
header is stored. This header is shipped with each block of compressed data. However, to keep the 
header overhead low, we have used the proposed storage efficient header [3]. @ 2003 Elsevier Ltd. 
All rights reserved. 

1. INTRODUCTION 

Huffman coding is not the best coding method now, but it may be the most-cited coding method 
until today. Huffman published his paper on coding in 1952 [4], and it instantly became the most 
imperative work in information theory. Huffman’s original work spawned many variations. And 
it dominated the world of coding until the early 1980s. 

But there are some practical problems in using original Huffman coding. One of the most 
prominent problems is that we have to read the whole stream prior to coding. This is a major 
problem when 

(i) the file size is too large; 
(ii) the source stream is continuous. 

When the file size is large it will take much a longer time to build the Huffman header for 
compression. This happens because we have to read the whole file twice from the source stream, 
that is, in most cases hard disks. In the first read pass, we have to build the Huffman tree to 
build codes for individual character. In the second read pass, we do the real work of compression. 
If the file size is small enough to be stored in the main memory, reading in the second pass can 
be done from the main memory instead of the hard disk. This will reduce the overhead time of 
reading from a slow speed device twice. But when the file size is large, we cannot store it in the 
main memory. And thus, we are unable to avoid the second time reading from the hard disk 
drive. With the original method of Huffman coding, there is no way to avoid it. 

When the source stream is continuous, the original Huffman coding is simply inapplicable. 
Because without knowledge of the total stream, we cannot build the Huffman tree to compress 

0898-1221/03/$ - see front matter @ 2003 Elsevier Ltd. All rights reserved. 
doi: 10.1016/S0898-1221(03)00385-7 

Typeset by &$w 



1582 M. ABDUL MANNAN AND M. KAYKOBAD 

the input stream. However, there is a remedy for this problem, which is known as dynamic 
Huffman coding [ 1,2]. 

Given nonnegative weights (wi . . . UJ,), the Huffman algorithm can be used to construct a 
binary tree with n external nodes and n - 1 internal nodes, where the external nodes are labeled 
with weights (‘~1 . . . w,) in some order. Huffman’s tree has the minimum value of (will . . . w,I,) 
over all such binary trees, where Zi is the level at which wi occurs in the tree. But in the case of 
a continuous string, the weights wi are not given. In this case, encoding of the ith character c, 
is based on a Huffman tree for the frequencies of the previously encoded portion tics . . . ci-1. 
The encoding process thereby learns the frequencies of the encoded string as it proceeds. The 
decoding process also learns how the code is evolving in exactly the same way as the encoding 
process does. Thus, by continually updating a Huffman code, both sender and receiver of a 
continuous stream can keep synchronized with each other. 

This outline of dynamic Huffman coding was described in [2]. However, this principle of 
adaptive Huffman coding was discovered by Gallager [l]. 

The problem of this method is that it simply hampers the original simplicity of Huffman coding 
and puts some overhead of rearranging the code tree every time the sender sends a character and 
a receiver receives a character. However, the most common case of continuous stream-the 
internet-sends data chunk by chunk, rather than character by character. Keeping in mind these 
things, we have proposed an alternative method of Huffman coding for a continuous stream, 
which is termed block Huffman coding. 

2. PROPOSED ALTERNATIVE METHOD 

Our proposed method is pretty simple. The main idea is to break the input stream into blocks 
and compress each block separately. We choose block size in such a way that we can store one full 
single block in main memory. Our proposed method is termed block Huffman coding. We have 
used BHC for block Huffman coding and PHC for pure Huffman coding. The proposed methods 
for static and continuous data are outlined below. 

Algorithm for Static Data 

1. Read a block from the stream into the main memory. 
2. Build the Huffman tree and code for this block. 
3. Compress this block by reading it from the main memory. 
4. Put the header and compressed data to the output stream. 
5. If there is more data in the input stream, go to Step 1. Otherwise coding is ended. 

How It Solves Our Problem 

This method can handle both the drawbacks mentioned in the previous section. In the first case, 
as we are reading the file from the hard disk only once, compression speed increases significantly, 
because the second pass reading is done from the main memory that is much faster than the hard 
disk. Now the file size may be as large as we can imagine without suffering double penalties for 
reading two times from the hard disk drive. So our first problem is practically solved. 

Algorithm for the Continuous Stream 

Now let us consider the second shortcoming. In information transfer in a network environment, 
we have to face a continuous stream quite often. For this case, we can modify the above idea in 
the following way. 

1. Read data from the stream into the main memory. 
2. If the block is not completed, then go to Step 1. 
3. Build the Huffman tree and code for this block. 



Block Huffman Coding 1583 

4. Compress this block by reading it from the main memory. 
5. Put the header and compressed data to the output stream. 
6. Go to Step 1. 

However, during Steps 3-5, we have to store the incoming data in parallel mode. In this way. 
we can solve the problem in the case of a continuous stream. 

Multiple Header Storage 

If we investigate our above methods, it may seem that there is a potential problem of increase 
in size of compressed data due to the storage space of a multiple header for a single file. The 
problem is shown pictorially in Figure 1. 

Uncompressed data 
1 

Figure 1. Original method 

Uncompressed data 

Figure 2. Proposed method. 

As the number of data blocks increases, the overhead for storing multiple headers becomes 
significant. This causes penalty in compression ratio. That is why we have redesigned the 
storage method of headers. Here we cannot reduce number of blocks much. But if we can reduce 
the size of the header, the overhead may not be that significant. Actually, we did just that. The 
size of the proposed method of header structure takes much less space than the common method 
of storing a header. This is discussed in a separate section. 

Block Size 

Another thing we have to consider in this proposed method is the block size. The main limiting 
factor here is the size of the usable main memory. If we take block size to be as small as 1 Kbyte, 
there would be a large number of blocks. However, this will incur much less memory overhead. 
But as for each block, we have to store a header, the storage overhead for headers is significant. 
This decreases with the increasing size of the block. But increase in block size must put up with 
the usable size of physical memory. We can use a block size as moderate as 5 Kbytes, 10 Kbytes, 
or 12 Kbytes. 

Locality 

In original Huffman coding, the code tree is built after reading the whole file. The algorithm 
assumes that the probability of every character is almost the same in the entire file. Hence, the 



1584 M. ABDUL MANNAN AND M. KAYKOBAD 

Table 1. Compression ratio in pure and block Huffman coding. 

File Name Size in Bytes 
Compression Ratio Compression Ratio 

in PHC (%) in BHC (%) 

CDPLAYER.EXE 106496 32.83 36.44 

D-COMP2.EXE 123609 67.67 68.95 

D5.EXE I 37251 I 41.63 I 42.75 

D7.EXE 41145 41.53 43.13 

DIALER.EXE 63240 16.59 19.22 

EMM386.EXE 125495 39.34 42.57 

AUXFUNCS.BAK 1 52852 37.02 I 37.17 

Ol.BMP I 118448 I 84.66 I 84.60 

02.BMP I 66704 1 83.61 I 83.47 

03.BMP I 733216 I 85.96 I 85.84 

04.BMP 1 307514 I 37.02 I 42.45 

05.BMP 

I  I  I  

66146 20.27 25.59 

CC.LIB I 280064 18.44 I 18.73 

DATA.DOC I 106496 I 55.16 I 54.92 

HELP.EXE I 35541 I 17.53 I 20.24 

JVIEW.EXE 169232 45.53 48.44 

NET.EXE 356134 23.14 27.27 

VISIO32.EXE 903680 52.61 63.63 
J 

PA1NT.C I 50900 36.89 I 37.61 

SHl.JPG I 137509 8.74 I 7.84 

GRAPHICS.LIB 1 29263 1 16.85 I 16.32 

FE.HTM I 14569 36.77 I 36.41 

FINAL.DOC 401408 I 48.28 I 54.52 

ISDl.DOC 61440 53.49 57.71 

JURAIN.DOC I 35328 67.79 I 67.80 

NFPE.DOC I 349184 39.00 I 48.41 

TEST.TXT I 46186 ( 39.55 I 40.92 

code tree is built for global data. But in practical cases, we have seen that characters are not 
scattered randomly in the entire file. For example, the ASCII character zero (null character) 
is found in groups as large as 10Kbytes in some executable (.exe) files. This type of locality 
is also prominently present in bitmap (.bmp) files. In fact, it is almost always a better idea to 
compress a data block with the local code tree for that block. And this consideration of locality 
is an inherent feature of our proposed method. So we can expect that our proposed method will 
perform better than the original method. 

Finding the Middle Ground 

If we increase the block size, we can minimize the overhead of storing multiple headers. How- 
ever, by taking a small size block, we can acquire greater advantage of locality feature. So we have 
to find the middle ground. This may vary from file to file as it is related to inherent characteristics 
of the input file. 



Block Huffman Coding 1 58C 

The Program 

We have implemented the program in C language. In the program, we have also shown thtb 
overhead incurred by each block. To increase the speed of compression, no dynamic memory 
allocation is used. All operations are implemented with array. Our findings for the program arc 
given in the following section. 

The Results 

Results of our findings are listed in the following tables. In Table 1, we have compared the 
results from original Huffman coding and block Huffman coding. Here we have used a block size 
of 10 Kbytes. 

In Table 2, we have shown the results of the block Huffman coding method in different block 
sizes. We have also listed the overhead caused by storing multiple headers. 

Table 2. Table listing compression and overhead ratio for different block sizes. 



1586 M. ABDUL MANNAN AND M. KAYKOBAD 

Discussion on Results in PHC and BHC 

We have said earlier that our proposed block Huffman coding is advantageous over pure Huff- 
man coding when we consider a large file and continuous stream. From the results of Table 1 and 
Figure 3, we have found another criteria of block Huffman coding-that is, in some cases it has a 
better compression ratio than original Huffman coding. This better efficiency in the compression 
ratio is the outcome of locality characteristics of the proposed method as it compresses locally 
rather than globally. Though the difference in compression ratio is insignificant in many cases, 
BHC is advantageous over PHC in termsof reading time from secondary storage. 

Compression Ratio in PHC and BHC 

lnplt Files 

Figure 3. Compression ratio of PHC and BHC. 

Discussion on Results for Different Block Sizes 

From the results of Table 2 and Figure 4, it is clear that the compression ratio has not changed 
significantly with the increase of block size. Even in some cases, the compression ratio deteriorates 
with increasing block size. The reason may be attributed to locality criteria as we have discussed 
earlier. The more we have taken the block size, the less we have taken the advantages of proximity 
characteristics of the input stream. 

Another comparison we have made in Table 2 and Figure 5 is among overhead ratios in different 
block sizes. The overhead mainly consists of the bitmap representation of the code tree and the 
sorted character list for every block. The overhead ratio has decreased as we have increased 
the block size. With the increase of block size, we have reduced the total number of blocks to 
compress. As with every block, there is a header to store, so the reduction in number of blocks 
has always caused reduction of the overhead ratio. 

Compresslon Ratlo In Different Block Slzos 

Input Files 

Figure 4. Compression ratios in different block sizes. 

Overhead vs. Block Slza 

__ 5Kbytes 

- Mbytes 
___.... q2Kbytes 

Input Files 

Figure 5. Overhead ratio in different block sizes. 



Block Huffman Coding 1587 

3. CONCLUSIONS 

So we can conclude from the discussion above that to obtain better efficiency from our proposed 
block Huffman coding, a moderate sized block is better. Another thing we may notice is that 
the block size does not depend on file types. So we can use this proposed method as a general 
method of coding. 

REFERENCES 
1. R.G. Gallager, Variations on a theme by Huffman, IEEE tins. Infown. Theory IT-24, 668-674, (1978). 
2. D.E. Knuth, Dynamic Huffman coding, Journal of Algorithms 6, 163-180, (1985). 
3. M.A. Mannan, R.A. Chowdhury and M. Kaykobad, A storage efficient header for Huffman coding, Proceedings 

ICCIT, 57-59, (2001). 
4. D.A. Huffman, A method for the construction of minimum-redundancy codes, Proceedings of the IRE 40 (9). 

1098-1101, (September 1952). 


