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A b s t r a c t - - S e a r c h  trees, specially binary search trees, are very important data structures that  
contributed immensely to improved performance of different search algorithms. In this paper, we 
express certain parameters of search trees in terms of Stirling numbers. We also introduce two new 
inversion formulas relating Stifling numbers of the first and second kinds. (~) 2004 Elsevier Ltd. All 
rights reserved. 

K e y w o r d s - - S e a r c h  trees, Generating functions, Stirling numbers. 

1. I N T R O D U C T I O N  

That searching is of paramount importance for computer systems can be recognized from the 

fact that over 25% of the running time of computers is spent on sorting [i], which is primarily 

used for searching. The linear complexity of searching in an unsorted array or a linked list, and 

deleting from or inserting an element into a sorted array has made all of them inappropriate 

as a data structure in which all of those operations have to be performed. This has resulted 

in a new data structure called search tree in which all those operations can be performed in 

logarithmic time on the average. Thus, a search tree can be used both as a dictionary and as 

a priority queue. Although there is a possibility that a search tree can degenerate into a linear 

list, its average case complexity is still O(log n). In order to avoid a bad worst case complexity, 

a modification of search trees, known as AVL trees, was introduced by Adel'son-Vel'skii and 

Landis in 1962 [2]. Several attempts have been made to find out the expected behavior of AVL 

trees. Foster (see [3, p. 462]) has proposed an approximate model. Yao [4] introduced a different 

We profusely thank Professor G.H. Gonnet for Maple that  relieved us from tedious manipulation of mathematical 
expressions. 
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technique called fringe analysis for average case analysis of balanced search trees. Brown [2] later 
used this technique to obtain a partial analysis of AVL trees. In his analysis, Brown considered 
the collections of AVL subtrees with three or less leaves and called it the fringe of the AVL tree. 

In an earlier paper, [5] we introduced a new recurrence relation capable of capturing a lot more 
properties of search trees together with their generalization with respect to number of sons. In 
this paper, we express some of the parameters in terms of Stifling numbers. We also introduce 
two new inversion formulas in the same spirit as those in Graham [3] relating Stirling numbers 
of the first and second kinds. 

2. P R E L I M I N A R I E S  

We first consider random binary search trees, and assume that  each of the n elements is equally 
likely to be inserted at the root and that  for the elements of the left and right subtrees the same is 
true recursively. In order to deduce values expected height of a binary search tree, the following 
recurrence relation is available in the literature [3]: 

n - 1  

En = n + l +  -2 E E i .  (2.1) 
n 

i = 0  

Solution to this recurrence relation yields 

En = 1.38nlg(n) + O(n). (2.2) 

Since binary search trees can degenerate, although with extremely small probability, into a 
linear list requiring linear t ime for search, a refinement of binary search tree has been introduced 
to avoid this pathological case. In this data structure, called height balanced tree, additional 
balancing operation is performed whenever insertion into and deletion from it violate balancing 
property. Algorithms exist for the implementation of height balanced trees. The bound for the 
height of the tree is h < 1.441g(n + 1). Thus, the number of probes will be at most 1.441g(n + 1) 
in the worst case. 

In the next section, we express some of the parameters of search trees obtained from recurrence 
relations introduced in [6] in terms of Stirling numbers, and introduce two new inversion formulas 
relating Stirling numbers of the first and the second kinds. 

3. S O M E  N E W  R E C U R R E N C E  R E L A T I O N S  

Let us denote binary and ternary search trees respectively by T(2) and T(3). We also denote 
n(n - 1) . . .  (n - k + 1) by n k-- following the notation of falling powers, and n(n + 1) . . .  (n + k - 1) 

by n ~ rising powers as in [3]. The first parameter  of our interest is the expected number E(k, n) 
of external nodes at level k of a search tree on n internal nodes. We will use appropriate super- 
scripts in parentheses to distinguish parameters of binary and ternary search trees. Assuming as 
mentioned earlier that  any element may be inserted in the root with equal probability we have 
the following relation: 

1, i f k = n = 0 ,  
n- -1  

E(2)(k,n) = 2 E E(2)( k _  1,i), otherwise. 
n i=0 

(3.1) 

For any empty binary tree there is exactly one external node at level 0, that  is at the root. 
Otherwise, since the search tree consists of a root and two disjoint binary search trees Tt and T~ 
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Figure 1. A binary search tree. 

as in Figure 1, and since number  of elements in Tt and Tr are uniformly dis tr ibuted in the range 
from 0 to n - 1, we have the desired recurrence. 

After some manipulat ions,  we obtain 

nE(2)(k, n) - (n - 1)E(2)(k, n - 1) = 2E(2)(k - 1, n - 1). (3.2) 

Different te rms in (3.2) can be found as follows. For example,  the first t e rm comes from the 
coefficient of the following generating function: 

zCz(u ,z) = E nE(2)(k'n)ukz'L 
k,n~O 

Now~ 

C(u,z)  -=- E E(k ,n)ukz  '~ = E E ( k , n -  1)ukz ~-1. (3.3) 
k,n>_O k,n-l>_O 

After some manipulat ions  [5], we find tha t  

ZG'z(~,, z)  - z2a'z(~,, z) = 2~,za(~,, z)  
a ' ( u ,  z) 2~ 

=~ = 
G(u, z) 1 - z (3.4) 

ln(G(u,  z)) = - 2 u l n ( 1  - z) + lnc  = lnc(1 - z) -2~ 

O(~, z) = c(1 - z) - ~ .  

The coefficient in equation (3.4) is c, which equals 1. So, solution to (3.4) becomes 

G(u, z) = (1 - z) -2u 

(-2~F- z,~ 
n 

k 

(3.5) 

Then  the coefficient of G(u, z) 

[u~z ~] a (~ ,  z) = ~.,. (3.6) 

Let us consider a t e rnary  search tree. Ternary  search trees have applicat ion in 3-valued logic, 
and is useful in deducing various parameters  of 3-tIuffman trees [5]. Expec ted  number  of exter- 
nal nodes at  level k of a search tree having n internal nodes satisfies the  following recurrence 
relation [5]. 

3 ,~-1 
E (3) (k, n) - n(n + 1)//2 E ( n  - i)E(3)(k - 1, i). (3.7) 

i=0 
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The above recurrence relation corresponds to the generating function which satisfies the following 
differential equation: 

z(1 - z)2G~(u, z) + 2(1 - z)2G'z(u, z) - 6uG(u, z) = 0. (3.8) 

We could not solve equation (3.8) analytically. The following solution to (3.8) has been obtained 
using MAPLE. 

z) = 1 + + + 2 )z  2 

+ 1 u (12u 2 + 32u + 12) Z 3 

1 (3.9) 
+ T ~  u (54u 3 + 360u 2 + 522u + 144) z 4 

G(u, 0) = 1 is the boundary condition to be satisfied by the solution. 
Number of internal nodes, sum total of weights and expected external path length can be 

obtained by, respectively, replacing u by 1, u by 1/3 and by replacing u by 1 in G'(u, z). 
The above recurrence relation gives a lot more option than the recurrence relation that exists 

in the literature [3]. For example, the existing recurrences cannot be used to find the expected 
number of external nodes at a particular level of the tree. Parameters of ternary search trees can 
also be calculated from the relation. 

4 .  S O M E  N E W  F O R M U L A E  

Stirling numbers, named after James Stirling, axe close relatives of binomial coefficients. These 
numbers come in two fiavours namely, Stirling number of the first and second kind. Stirling 
numbers of the first and second kinds combine themselves mutually in the following nice ways. 
Stirling number of the first kind counts the number of ways n things can be arranged to have k 
cycles, whereas Stirling number of the second kind counts the number of ways to partition a set 
of n things into k nonempty sets. Here again, we follow [3] for notations for Stirring numbers, 
where for Stirling number of the first kind square brackets are used, and for that of the second 
kind curly brackets are used. The formulae considered here are in the same spirit as in [3, p. 192]. 

FORMULA 1. 

9 ( n ) =  ~ [ k ]  f(k)¢=> f ( n ) =  ~ { k } ( -1)n-kg(k) ,  for n >  0. (3.10) 
k k 

PROOF. Let us first prove that 

k k 

Let g(n) = ~ k  [~] f(k) be true, for all n > 0, then 

3 

= ~ f ( j ) [n  = j] 
J 

= f(n). 

The proof for the reverse direction is similar since the relation between f and g is symmetric. 
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FORMULA 2. 

g(n)= E [k] (--1)~-kf(k)cvf(n)=~k {nk }g(k), 
k 

PROOF. Let us first prove that 

g(n)= E Ink] (--1)n-kf(k) ~ f(n)---- E { k  } g(k). 
k k 

Let g(n) = ~-~k [k] (--1)'~-kf(k) is true, for all n > 0, then 

--~j f(J)(--1)n-J~k {~} [:] (--1)n-k 

= Ef(j)(-1)n-J[n = j] 

for all n > 0. 

J 
= fin). 

The proof for the reverse direction is again similar for the same reason. 
Now, let us see in what way they help us to have closed forms for other sums. 
What is the value of )-~k { k } (-1) k? 
Now we focus to the formula one. 

g (n) :  ~ [k] f(k)¢v f(n)= E { k } (-i)n-kg(k), for n>  0. 
k k 

Here, if we assume g(n) = n! and f(n) = 1, we reach 

n ! = E [ k l  ~=~ 1 -- E { k } (-l)kkL 
k k 

So alternating sum of row of the Stifling number of first kind is 1. 
We provide some similar identities where 

[n+l 1 m + l J  = ~ [ ~ ]  (k )¢ :~  ( ~ : ) = ~ { ~ }  [mk~_llJ(_l)n_k 

[n~nl] : ~ [ k ]  (kml)(--1)m--l--k ¢=~ ( n ~ n l )  (--1)m-n-1 

= ~ { k } [ k m l ] ( - l )  ~-k, 

(n-1)n-l-m[n-l >-m] =- ~~ [nk] { k } 
k 

{:}(-1)m-'~=-E{~}(-1)'~-k(k-l)k-l-'n[k-l>_m], 
k 

k (--1)n-kzk" 
k k 

751 

(3.11) 
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In [3], there is a closed form for the coefficients of [~1 in the representation of rising powers by 

falling powers. 

x ~ E l n l  = k x&' in tn  >_ 0. (3.12) 
k 

This results in a recurrence relation for I~1" 
n Here we would like to find a closed form for the coefficient of ( k }, known as Eulerian num- 

ber, the number of permutations of {1 ,2 , . . . ,n}  that have k ascents (see [3, p. 267]), in the 
representation of falling powers by the rising powers: 

Xn--=~k <n I - k xk' in tn  > 0, (3.13) 

x ~- = ( z  - n + 1 )  ~ 

= ~-~ ( n ) f i  ( - n + l ) ~ - k 

k 
(3.14) 

Equating coefficient of (3.13) and (3.14), we get 

<nk>= (nk)(-n+l)n-k. (3.15) 

Now, let us find a recurrence relation for ( k ) 

(~)  ( -n+lp  -k 

( k )  ( - n + 2 ) n - k l - n l - k  [ k # l ]  

={(n--1)(--n+2)n-k+(n--1)(--n+2)n-k} k 1-k 
1 (n-1 -n 

1 - k  

{ ( k - l >  (n- l l (1-k )}  1-n [k•0] 
= 1 + k 1 - k  

:(l_n_k)( kn-1 }+k(n;1)(_n+2)K'~-f+ll__~k < n - l _  k-l> 

: ( 1 - n - k ) < n ; l > + h ~  (nk:11)(-n+2) n-a 

+ ~ - k  k l 

=(1-n-k)<n-11k +~-kn-k <nk-l>l +~-kl-n <n-l>k_l 

[k#0] 

[k #0] 

[k ~- 1] 

[k # ~1 

[k -~ 1] 

(3.16) 

[for all integer n, k] 

f(n) = g(k) 4:> g(n) = k f(k) k k 
int n ~ O. 
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Let assume the left side is true, then 

k 

n k 

k 

3 k 

3 k 

=~_~g(J)(--1)n(n--1)n-J(--1)n(jOn) 

= g ( n )  

I ;  = ( k )  (n - l)n-k 

( k )  : ( k )  (1 - n)'~:-k 

= (nk)(--1)n-k(n--l)n-k. 

Hence, 

As [3] provides an inversion formula for [[ as 

I; --r l 
so do we for ( ) as 

FORMULA 3. 

people? 

(3.17) 

How many ways can n people be grouped where each group contains exactly k 

1, 

0 r 

/ n - l \  k 
kPn = ~ k - l ) P~-k, 

\ k k J  / 

i fk  = n, 

if k > n, 

if k divides p, 

if k does not divide p. 
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5. C O N C L U S I O N  

In this paper, we have applied Stirling numbers  to express values of some parameters  of b inary  

search trees tha t  are not  available in the l i terature so far as our knowledge goes. We have also 

derived some formulae relating Stirling numbers  of the first and  second kinds. 
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