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ABSTRACT 

It is shown that a sufficient condition for a nonnegative real symmetric matrix to 
be completely positive is that the matrix is diagonally dominant. 

1. INTRODUCTION 

A number of authors have discussed the problem of deriving conditions 
for a given matrix to be completely positive [3,4,7]. The purpose of this 
paper is to establish a set of “easily verifiable” sufficient conditions for a 
given matrix to be completely positive and provide an algorithm for factoriza- 
tion of such matrices. 

A real n X 71 symmetric matrix A is called completely positive if A can 
be factored as BB’ for some n X m nonnegative real matrix B for m < 00 
(here t denotes transpose). Results of Diananda [l] and Hall and Newman [3] 
on quadratic forms show that a nonnegative factorization of a nonnegative 
positive semidefinite n X n matrix is possible when n < 4. Furthermore, for 
any completely positive matrix, a nonnegative factorization with m I 2” was 
constructed by Hall and Newman [3]. Hannah and Laffey [4] have found a 
better bound for m. They have shown that there exists a factorization with 
m < ik( k + 1) - N, where 2N is the maximal number of off-diagonal entries 
which equal zero in a nonsingular principal submatrix of A, and k is the rank 
of the matrix A. In general for n 2 5, it was shown by Horn (see [l]) and 
Gray and Wilson [2] that such a nonnegative factorization does not exist. 

Inter=est in work on nonnegative factorization came from the theory of 
inequalities, the study of block designs in combinatorics, and the context of 
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association in random vectors. Gray and Wilson [2] studied a mathematical 
model of energy demand for certain sectors of the U.S. economy, wherein 
A = BLB, and elements of B are parameters and should satisfy nonnegativity 
constraints because of their physical interpretation. 

Hannah and Laffey [4] remarked that no general necessary and sufficient 
conditions for A to be completely positive are known. Some special results in 
this respect were obtained by Markham [7] and Lau and Markham [6]. In our 
work we will present a set of easily verifiable sufficient conditions for 
nonnegative positive semidefinite symmetric matrices to be completely posi- 
tive. Also we will give an algorithm for constructing the factorization, 
associating the given matrix with a graph. 

2. PRELIMINARIES 

An n X nt matrix B is said to be a vertex-edge incidence matrix if there 
exists a graph G such that 

b,(i,j) = 
1 if vertex i is incident at edge (i , j ) in G, 

0 otherwise. 

We refer to Harary [5] for definitions of graphical terminology. 
BBt is a nonnegative positive semidefinite symmetric matrix. In fact, 

A - D(A) is an adjacency matrix of the graph G, where D(A) is a diagonal 
matrix with the diagonal entries of A. The diagonal entries aii are the node 
degrees of vertex i, i=l,..., fl. If the entries of B are any nonnegative 
numbers, then B is said to be a weighted vertexedge incidence matrix, and 
bici, jj is referred to as the length of edge (i, j). A = BB’ implies the existence 
of column vectors Pk 2 0, k = 1,. . . , m, such that A = CrC1jIkP:. 

3. THE MAIN RESULT 

A square matrix P = (pi j) is called diagonally dominant if Pii 2 Z;+ i ] Pij]. 
Our main result is formulated as follows: 

THEOREM 1. Let A be a nonnegative diagonally dominant symmetric 
matrix. Then A is completely positive. 
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Proof. We prove this theorem by constructing a factorization of an 
arbitrary diagonally dominant symmetric matrix A. We relate a multigraph 
G = (V, E) to the matrix in the following way: Row i and column i of the 
matrix A correspond to vertex i E V. Vertex i is connected to vertex j if 
aij > 0, i # j. Vertex i is connected to itself by a loop if a, = a,, - Cjfiaij > 
0. For each positive a, j there is an edge (i, j) E E. The set E also includes 
loops. To each edge (i, j) we associate a number bici, jj = 6 if i # j; 

otherwise bici ij = 6. Now construct the weighted vertex-edge incidence 
matrix B (vertex corresponds to row, and edge corresponds to column) of the 
graph G. Clearly, we will have exactly two positive entries in each column 
corresponding to edges which are not loops. For loops we have a single entry, 
since a loop is incident at a a single vertex. Then we have 

tBB’)ij = C bi(i,k)bj(i,k)’ 
k(i,k)EE 

Now bj(i,k) is positive only if edge (i, k) is incident on vertex j, that is, either 
i = j or k = j. Thus 

(BBf)‘j=bi(i,j~bj(i,j)=Uij for i+j 

CBBL)ii = C bi(i,k)bi(i,k)= C ‘ii+ ‘i 

il(i,k)EE j+i 

= C uij+uii- C uij=uii for iEV. 
j#i j#i 

This proves that BB’ = A. n 

This result can obviously be generalized as in the following theorem: 

THEOREM 2. Let C = PAP’ with P 2 0, and A be a nonnegative diugo- 

n&y dominant symmetric matrix. Then C is completely positive. 

Proof. Since A is completely positive by virtue of Theorem 1, we have 

C= PAP’= PBB’P’= (PB)(PB)‘. 
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As both P and B are nonnegative, so is 8 = PB. So C is factorizable as -- 
C = BB’, and the result follows. n 

The dimension of the constructed matrix B is n X m, where m = $n (n + 
1) - N - I, 2N is the number of off-diagonal entries which equal zero, and 1 
is the number of rows the diagonal entry of which is equal to the sum of the 
off-diagonal entries. 

In the following we provide an algorithm which will find a factorization 
with a better bound for m. The algorithm is described as follows: 

ALGORITHM 1. 

Step 0. 
Step 1. 
Step 2. 
Step 3. 

Step 4. 
Step 5. 

Step 6. 

Mark all vertices as unlabeled. 
Choose any spanning tree T of G. 
Mark all vertices without loops as labeled. 
If there is no more than one unlabeled vertex, Go to Step 6. 
Otherwise, choose an unlabeled vertex i such that there exists a 
partition 

T=T’uT’, iET’nT’, T’ = (V’,E’), T2 = (V2,E2). 

Here all vertices of T’ are labeled except vertex i. Label vertex i. 
Remove the loop on vertex i. 
Adjust the length of row vector i by putting bi(i,i, = 0, bici, j) 
= ,/+ for some (i, j) E E2. To adjust inner products assign 

bjcj,i, = a,,//=. I n order to adjust the length of the vector 

bj, increase bjtj, jj accordingly. If bjcj, jj > 0 then unlabel vertex j. 
Go to step 3. 
stop. 

Note that since T is a spanning tree, there can be at most one unlabeled 
vertex with a loop when the algorithm stops. The solution will correspond to 
a graph G, = (V, E,) with at most a single loop, and if we assume that G has 
a loop around each vertex, then IE, I= IEl - (n - 1). 

4. A NUMERICAL EXAMPLE 

In this section we will take a matrix that satisfies the conditions in 
Theorem 1 and find the required factors by the algorithm described in the 
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FIG. 1. 

previous section. We have taken a 5 X 5 matrix, since matrices of smaller size 
are amenable to even square factorization with a diagonaldominance condi- 
tion [2]. Let 

a b c d e 

; ‘15 3 18 3 2 7 0 1 o\ 2 
A= 2 

: 1 
7 20 6 1 
0 6 9 2 

e\O 2 1 2 7, 

That the matrix is diagonally dominant is easily verifiable. Let the rows and 
columns of A be labeled by a, b,c,d ,e [vertices in the graph G = (V, E) 
below]. Weights are assigned to the edges as shown in Figure 1. It is easy to 
check that the value of m corresponding to G is 

5x6 
I3=-- 

nX(n+l) 

2 
2= - N. 

2 

Now using Algorithm 1, we get a reduced matrix B with nine columns as 
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shown below: 

a 

b 

B= c 

d 

e 

ab ac ad bc be cd ce de cc 

In B there is just one column corresponding to a loop, and the value of m is 
9 = n(n + 1)/2 - N- (n - 1). 

5. CONCLUSIONS 

Using Section 4, we have the following result: 

THEOREM 3. If A is a diagonally dominant nonnegative symmetric 
matrix, then A can be factored as BB’, where B is an n X m matrix, 
m I fn( n + 1) - N - (n - p), 2N is the number of zeros in offdiagonal 
positions of A, and p is the number of connected components of the graph G. 

We observe that given any nonnegative diagonally dominant symmetric 
integer matrix A, one can find a 0, 1 matrix B by replacing edge (i, j )‘ with 
a i j multiple edges, and then B will correspond to the vertex-edge incidence 
matrix of the corresponding multigraph. The dimension of B in this case will 
be increased, and the value of m will be E. , E “aii. If we restrict to an integer 
matrix B, then the following theorem gives a better bound for m: 

THEOREM 4. If A is a diagonally dominant symmetric nonnegative 
integer matrix, then A can be factored as BBf, where B is an n x m integer 
matrix, m I 2( n2 + n - 2N). 

This theorem can be deduced from a theorem of Lagrange [8,p.82] which 
asserts that every positive integer is the sum of four or fewer squares of 
positive integers. If we restrict to integer B, then the value of m for our 
example of Section 4 is 25, compared to 69 when B is a 0, 1 matrix. The 
problem of obtaining an easily verifiable set of necessary and sufficient 
conditions for a matrix to be completely positive remains unsolved. 
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