"The problem is not that there are problems. The problem is expecting otherwise and thinking that having problems is a problem."
-Theodore Rubin
Chapter 10: On the Imperfection of the Geological Record
By: Charles Darwin, 1859
IN THE sixth chapter I enumerated the chief objections which might
be justly urged against the views maintained in this volume. Most of
them have now been discussed. One, namely the distinctness of specific
forms, and their not being blended together by innumerable
transitional links, is a very obvious difficulty. I assigned reasons
why such links do not commonly occur at the present day under the
circumstances apparently most favourable for their presence, namely,
on an extensive and continuous area with graduated physical
conditions. I endeavoured to show, that the life of each species
depends in a more important manner on the presence of other already
defined organic forms, than on climate, and, therefore, that the
really governing conditions of life do not graduate away quite
insensibly like heat or moisture. I endeavoured, also, to show that
intermediate varieties, from existing in lesser numbers than the forms
which they connect, will generally be beaten out and exterminated
during the course of further modification and improvement. The main
cause, however, of innumerable intermediate links not now occurring
everywhere throughout nature, depends on the very process of natural
selection, through which new varieties continually take the places
of and supplant their parent-forms. But just in proportion as this
process of extermination has acted on an enormous scale, so must the
number of intermediate varieties, which have formerly existed, be
truly enormous. Why then is not every geological formation and every
stratum full of such intermediate links? Geology assuredly does not
reveal any such finely-graduated organic chain; and this, perhaps,
is the most obvious and serious objection which can be urged against
the theory. The explanation lies, as I believe, in the extreme
imperfection of the geological record.
In the first place, it should always be borne in mind what sort of
intermediate forms must, on the theory, have formerly existed. I
have found it difficult, when looking at any two species, to avoid
picturing to myself forms directly intermediate between them. But this
is a wholly false view; we should always look for forms intermediate
between each species and a common but unknown progenitor; and the
progenitor will generally have differed in some respects from all
its modified descendants. To give a simple illustration: the fantail
and pouter pigeons are both descended from the rock-pigeon; if we
possessed all the intermediate varieties which have ever existed, we
should have an extremely close series between both and the
rock-pigeon; but we should have no varieties directly intermediate
between the fantail and pouter; none, for instance, combining a tail
somewhat expanded with a crop somewhat enlarged, the characteristic
features of these two breeds. These two breeds, moreover, have
become so much modified, that, if we had no historical or indirect
evidence regarding their origin, it would not have been possible to
have determined, from a mere comparison of their structure with that
of the rock-pigeon, C. livia, whether they had descended from this
species or from some allied form, such as C. aenas.
So, with natural species, if we look to forms very distinct, for
instance to the horse and tapir, we have no reason to suppose that
links directly intermediate between them ever existed, but between
each and an unknown common parent. The common parent will have had
in its whole organisation much general resemblance to the tapir and to
the horse; but in some points of structure may have differed
considerably from both, even perhaps more than they differ from each
other. Hence, in all such cases, we should be unable to recognise
the parent-form of any two or more species, even if we closely
compared the structure of the parent with that of its modified
descendants, unless at the same time we had a nearly perfect chain
of the intermediate links.
It is just possible by theory, that one of two living forms might
have descended from the other; for instance, a horse from a tapir; and
in this case direct intermediate links will have existed between them.
But such a case would imply that one form had remained for a very long
period unaltered, whilst its descendants had undergone a vast amount
of change; and the principle of competition between organism and
organism, between child and parent, will render this a very rare
event; for in all cases the new and improved forms of life tend to
supplant the old and unimproved forms.
By the theory of natural selection all living species have been
connected with the parent-species of each genus, by differences not
greater than we see between the natural and domestic varieties of
the same species at the present day; and these parent-species, now
generally extinct, have in their turn been similarly connected with
more ancient forms; and so on backwards, always converging to the
common ancestor of each great class. So that the number of
intermediate and transitional links, between all living and extinct
species, must have been inconceivably great. But assuredly, if this
theory be true, such have lived upon the earth.
On the Lapse of Time, as inferred from the rate of Deposition and
extent of Denudation
Independently of our not finding fossil remains of such infinitely
numerous connecting links, it may be objected that time cannot have
sufficed for so great an amount of organic change, all changes
having been effected slowly. It is hardly possible for me to recall to
the reader who is not a practical geologist, the facts leading the
mind feebly to comprehend the lapse of time. He who can read Sir
Charles Lyell's grand work on the Principles of Geology, which the
future historian will recognise as having produced a revolution in
natural science, and yet does not admit how vast have been the past
periods of time, may at once close this volume. Not that it suffices
to study the Principles of Geology, or to read special treatises by
different observers on separate formations, and to mark how each
author attempts, to give an inadequate idea of the duration of each
formation, or even of each stratum. We can best gain some idea of past
time by knowing the agencies at work, and learning how deeply the
surface of the land has been denuded, and how much sediment has been
deposited. As Lyell has well remarked, the extent and thickness of our
sedimentary formations are the result and the measure of the
denudation which the earth's crust has elsewhere undergone.
Therefore a man should examine for himself the great piles of
superimposed strata, and watch the rivulets bringing down mud, and the
waves wearing away the sea-cliffs, in order to comprehend something
about the duration of past time, the monuments of which we see all
around us.
It is good to wander along the coast, when formed of moderately hard
rocks, and mark the process of degradation. The tides in most cases
reach the cliffs only for a short time twice a day, and the waves
eat into them only when they are charged with sand or pebbles; for
there is good evidence that pure water effects nothing in wearing away
rock. At last the base of the cliff is undermined, huge fragments fall
down, and these, remaining fixed, have to be worn away atom by atom,
until after being reduced in size they can be rolled about by the
waves, and then they are more quickly ground into pebbles, sand, or
mud. But how often do we see along the bases of retreating cliffs
rounded boulders, all thickly clothed by marine productions, showing
how little they are abraded and how seldom they are rolled about!
Moreover, if we follow for a few miles any line of rocky cliff,
which is undergoing degradation, we find that it is only here and
there, along a short length or round a promontory, that the cliffs are
at the present time suffering. The appearance of the surface and the
vegetation show that elsewhere years have elapsed since the waters
washed their base.
We have, however, recently learnt from the observations of Ramsay,
in the van of many excellent observers- of Jukes, Geikie, Croll, and
others, that subaerial degradation is a much more important agency
than coast-action, or the power of the waves. The whole surface of the
land is exposed to the chemical action of the air and of the
rain-water with its dissolved carbolic acid, and in colder countries
to frost; the disintegrated matter is carried down even gentle
slopes during heavy rain, and to a greater extent than might be
supposed, especially in arid districts, by the wind; it is then
transported by the streams and rivers, which when rapid deepen their
channels, and triturate the fragments. On a rainy day, even in a
gently undulating country, we see the effects of subaerial degradation
in the muddy rills which flow down every slope. Messrs. Ramsay and
Whitaker have shown, and the observation is a most striking one,
that the great lines of escarpment in the Wealden district and those
ranging across England, which formerly were looked at as ancient
sea-coasts, cannot have been thus formed, for each line is composed of
one and the same formation, whilst our sea-cliffs are everywhere
formed by the intersection of various formations. This being the case,
we are compelled to admit that the escarpments owe their origin in
chief part to the rocks of which they are composed having resisted
subaerial denudation better than the surrounding surface; this surface
consequently has been gradually lowered, with the lines of harder rock
left projecting. Nothing impresses the mind with the vast duration
of time, according to our ideas of time, more forcibly than the
conviction thus gained that subaerial agencies which apparently have
so little power, and which seem to work so slowly, have produced great
results.
When thus impressed with the slow rate at which the land is worn
away through subaerial and littoral action, it is good, in order to
appreciate the past duration of time, to consider, on the one hand,
the masses of rock which have been removed over many extensive
areas, and on the other hand the thickness of our sedimentary
formations. I remember having been much struck when viewing volcanic
islands, which have been worn by the waves and pared all round into
perpendicular cliffs of one or two thousand feet in height; for the
gentle slope of the lava-streams, due to their formerly liquid
state, showed at a glance how far the hard, rocky beds had once
extended into the open ocean. The same story is told still more
plainly by faults,- those great cracks along which the strata have
been upheaved on one side, or thrown down on the other, to the
height or depth of thousands of feet; for since the crust cracked, and
it makes no great difference whether the upheaval was sudden, or, as
most geologists now believe, was slow and effected by many starts, the
surface of the land has been so completely planed down that no trace
of these vast dislocations is externally visible. The Craven fault,
for instance, extends for upwards of 30 miles, and along this line the
vertical displacement of the strata varies from 600 to 3000 feet.
Professor Ramsay has published an account of a downthrow in Anglesea
of 2300 feet; and he informs me that he fully believes that there is
one in Merionethshire of 12,000 feet; yet in these cases there is
nothing on the surface of the land to show such prodigious
movements; the pile of rocks on either side of the crack having been
smoothly swept away.
On the other hand, in all parts of the world the piles of
sedimentary strata are of wonderful thickness. In the Cordillera I
estimated one mass of conglomerate at ten thousand feet; and
although conglomerates have probably been accumulated at a quicker
rate than finer sediments, yet from being formed of worn and rounded
pebbles, each of which bears the stamp of time, they are good to
show how slowly the mass must have been heaped together. Professor
Ramsay has given me the maximum thickness, from actual measurement
in most cases, of the successive formations in different parts of
Great Britain; and this is the result:-
Palaeozoic strata (not including igneous beds): 57,154 feet
Secondary strata: 13,190 feet
Tertiary strata: 2,249 feet
-making altogether 72,584 feet; that is, very nearly thirteen and
three-quarters British miles. Some of the formations, which are
represented in England by thin beds, are thousands of feet in
thickness on the Continent. Moreover, between each successive
formation, we have, in the opinion of most geologists, blank periods
of enormous length. So that the lofty pile of sedimentary rocks in
Britain gives but an inadequate idea of the time which has elapsed
during their accumulation. The consideration of these various facts
impresses the mind almost in the same manner as does the vain
endeavour to grapple with the idea of eternity.
Nevertheless this impression is partly false. Mr. Croll, in an
interesting paper, remarks that we do not err "in forming too great
a conception of the length of geological periods," but in estimating
them by years. When geologists look at large and complicated
phenomena, and then at the figures representing several million years,
the two produce a totally different effect on the mind, and the
figures are at once pronounced too small. In regard to subaerial
denudation, Mr. Croll shows, by calculating the known amount of
sediment annually brought down by certain rivers, relatively to
their areas of drainage, that 1000 feet of solid rock, as it became
gradually disintegrated, would thus be removed from the mean level
of the whole area in the course of six million years. This seems an
astonishing result, and some considerations lead to the suspicion that
it may be too large, but even if halved or quartered it is still
very surprising. Few of us, however, know what a million really means:
Mr. Croll gives the following illustration: take a narrow strip of
paper, 83 feet 4 inches in length, and stretch it along the wall of
a large hall; then mark off at one end the tenth of an inch. This
tenth of an inch will represent one hundred years, and the entire
strip a million years. But let it be borne in mind, in relation to the
subject of this work, what a hundred years implies, represented as
it is by a measure utterly insignificant in a hall of the above
dimensions. Several eminent breeders, during a single lifetime, have
so largely modified some of the higher animals which propagate their
kind much more slowly than most of the lower animals, that they have
formed what well deserves to be called a new sub-breed. Few men have
attended with due care to any one strain for more than half a century,
so that a hundred years represents the work of two breeders in
succession. It is not to be supposed that species in a state of nature
ever change so quickly as domestic animals under the guidance of
methodical selection. The comparison would be in every way fairer with
the effects which follow from unconscious selection, that is the
preservation of the most useful or beautiful animals, with no
intention of modifying the breed; but by this process of unconscious
selection, various breeds have been sensibly changed in the course
of two or three centuries.
Species, however, probably change much more slowly, and within the
same country only a few change at the same time. This slowness follows
from all the inhabitants of the same country being already so well
adapted to each other, that new places in the polity of nature do
not occur until after long intervals, due to the occurrence of
physical changes of some kind, or through the immigration of new
forms. Moreover variations or individual differences of the right
nature, by which some of the inhabitants might be better fitted to
their new places under the altered circumstances, would not always
occur at once. Unfortunately we have no means of determining,
according to the standards of years, how long a period it takes to
modify a species; but to the subject of time we must return.
On the Poorness of Palaeontological Collections
Now let us turn to our richest geological museums, and what a paltry
display we behold! That our collections are imperfect is admitted by
every one. The remark of that admirable palaeontologist, Edward
Forbes, should never be forgotten, namely, that very many fossil
species are known and named from single and often broken specimens, or
from a few specimens collected on some one spot. Only a small
portion of the surface of the earth has been geologically explored,
and no part with sufficient care, as the important discoveries made
every year in Europe prove. No organism wholly soft can be
preserved. Shells and bones decay and disappear when left on the
bottom of the sea, where sediment is not accumulating. We probably
take a quite erroneous view, when we assume that sediment is being
deposited over nearly the whole bed of the sea, at a rate sufficiently
quick to embed and preserve fossil remains. Throughout an enormously
large proportion of the ocean, the bright blue tint of the water
bespeaks its purity. The many cases on record of a formation
conformably covered, after an immense interval of time, by another and
later formation, without the underlying bed having suffered in the
interval any wear and tear, seem explicable only on the view of the
bottom of the sea not rarely lying for ages in an unaltered condition.
The remains which do become embedded, if in sand or gravel, will, when
the beds are upraised, generally be dissolved by the percolation of
rain-water charged with carbolic acid. Some of the many kinds of
animals which live on the beach between high and low water mark seem
to be rarely preserved. For instance, the several species of the
Chthamalinae (a sub-family of sessile cirripedes) coat the rocks all
over the world in infinite numbers: they are all strictly littoral,
with the exception of a single Mediterranean species, which inhabits
deep water, and this has been found fossil in Sicily, whereas not
one other species has hitherto been found in any tertiary formation:
yet it is known that the genus Chthamalus existed during the Chalk
period. Lastly, many great deposits requiring a vast length of time
for their accumulation, are entirely destitute of organic remains,
without our being able to assign any reason: one of the most
striking instances is that of the Flysch formation, which consists
of shale and sandstone, several thousand, occasionally even six
thousand feet in thickness, and extending for at least 300 miles
from Vienna to Switzerland; and although this great mass has been most
carefully searched, no fossils, except a few vegetable remains, have
been found.
With respect to the terrestrial productions which lived during the
Secondary and Palaeozoic periods, it is superfluous to state that
our evidence is fragmentary in an extreme degree. For instance,
until recently not a land-shell was known belonging to either of these
vast periods, with the exception of one species discovered by Sir C.
Lyell and Dr. Dawson in the carboniferous strata of North America; but
now land-shells have been found in the lias. In regard to
mammiferous remains, a glance at the historical table published in
Lyell's Manual will bring home the truth, how accidental and rare is
their preservation, far better than pages of detail. Nor is their
rarity surprising, when we remember how large a proportion of the
bones of tertiary mammals have been discovered either in caves or in
lacustrine deposits; and that not a cave or true lacustrine bed is
known belonging to the age of our secondary or palaeozoic formations.
But the imperfection in the geological record largely results
from another and more important cause than any of the foregoing;
namely, from the several formations being separated from each other by
wide intervals of time. This doctrine has been emphatically admitted
by many geologists and palaeontologists, who, like E. Forbes, entirely
disbelieve in the change of species. When we see the formations
tabulated in written works, or when we follow them in nature, it is
difficult to avoid believing that they are closely consecutive. But we
know, for instance, from Sir R. Murchison's great work on Russia, what
wide gaps there are in that country between the superimposed
formations; so it is in North America, and in many other parts of
the world. The most skilful geologist if his attention had been
confined exclusively to these large territories, would never have
suspected that, during the periods which were blank and barren in
his own country, great piles of sediment, charged with new and
peculiar forms of life, had elsewhere been accumulated. And if, in
each separate territory, hardly any idea can be formed of the length
of time which has elapsed between the consecutive formations, we may
infer that this could nowhere be ascertained. The frequent and great
changes in the mineralogical composition of consecutive formations,
generally implying great changes in the geography of the surrounding
lands, whence the sediment was derived, accord with the belief of vast
intervals of time having elapsed between each formation.
We can, I think, see why the geological formations of each region
are almost invariably intermittent; that is, have not followed each
other in close sequence. Scarcely any fact struck me more when
examining many hundred miles of the South American coasts, which
have been upraised several hundred feet within the recent period, than
the absence of any recent deposits sufficiently extensive to last
for even a short geological period. Along the whole west coast,
which is inhabited by a peculiar marine fauna, tertiary beds are so
poorly developed, that no record of several successive and peculiar
marine faunas will probably be preserved to a distant age. A little
reflection will explain why, along the rising coast of the western
side of South America, no extensive formations with recent or tertiary
remains can anywhere be found, though the supply of sediment must
for ages have been great, from the enormous degradation of the
coast-rocks and from muddy streams entering the sea. The
explanation, no doubt, is, that the littoral and sub-littoral deposits
are continually worn away, as soon as they are brought up by the
slow and gradual rising of the land within the grinding action of
the coast-waves.
We may, I think, conclude that sediment must be accumulated in
extremely thick, solid, or extensive masses, in order to withstand the
incessant action of the waves, when first upraised and during
successive oscillations of level as well as the subsequent subaerial
degradation. Such thick and extensive accumulations of sediment may be
formed in two ways; either in profound depths of the sea, in which
case the bottom will not be inhabited by so many and such varied forms
of life, as the more shallow seas; and the mass when upraised will
give an imperfect record of the organisms which existed in the
neighbourhood during the period of its accumulation. Or, sediment
may be deposited to any thickness and extent over a shallow bottom, if
it continue slowly to subside. In this latter case, as long as the
rate of subsidence and the supply of sediment nearly balance each
other, the sea will remain shallow and favourable for many and
varied forms, and thus a rich fossiliferous formation, thick enough,
when upraised, to resist a large amount of denudation, may be formed.
I am convinced that nearly all our ancient formations, which are
throughout the greater part of their thickness rich in fossils, have
thus been formed during subsidence. Since publishing my views on
this subject in 1845, I have watched the progress of geology, and have
been surprised to note how author after author, in treating of this or
that great formation, has come to the conclusion that it was
accumulated during subsidence. I may add, that the only ancient
tertiary formation on the west coast of South America, which has
been bulky enough to resist such degradation as it has yet suffered,
but which will hardly last to a distant geological age, was
deposited during a downward oscillation of level, and thus gained
considerable thickness.
All geological facts tell us plainly that each area has undergone
slow oscillations of level, and apparently these oscillations have
affected wide spaces. Consequently, formations rich in fossils and
sufficiently thick and extensive to resist subsequent degradation,
will have been formed over wide spaces during periods of subsidence,
but only where the supply of sediment was sufficient to keep the sea
shallow and to embed and preserve the remains before they had time
to decay. On the other hand, as long as the bed of the sea remains
stationary, thick deposits cannot have been accumulated in the shallow
parts, which are the most favourable to life. Still less can this have
happened during the alternate periods of elevation; or, to speak
more accurately, the beds which were then accumulated will generally
have been destroyed by being upraised and brought within the limits of
the coast-action.
These remarks apply chiefly to littoral and sub-littoral deposits.
In the case of an extensive and shallow sea, such as that within a
large part of the Malay Archipelago, where the depth varies from 30 or
40 to 60 fathoms, a widely extended formation might be formed during a
period of elevation, and yet not suffer excessively from denudation
during its slow upheaval; but the thickness of the formation could not
be great, for owing to the elevatory movement it would be less than
the depth in which it was formed; nor would the deposit be much
consolidated, nor be capped by overlying formations, so that it
would run a good chance of being worn away by atmospheric
degradation and by the action of the sea during subsequent
oscillations of level. It has, however, been suggested by Mr. Hopkins,
that if one part of the area, after rising and before being denuded,
subsided, the deposit formed during the rising movement, though not
thick, might afterwards become protected by fresh accumulations, and
thus be preserved for a long period.
Mr. Hopkins also expresses his belief that sedimentary beds of
considerable horizontal extent have rarely been completely
destroyed. But all geologists, excepting the few who believe that
our present metamorphic schists and plutonic rocks once formed the
primordial nucleus of the globe, will admit that these latter rocks
have been stript of their coverings to an enormous extent. For it is
scarcely possible that such rocks could have been solidified and
crystallized whilst uncovered; but if the metamorphic action
occurred at profound depths of the ocean, the former protecting mantle
of rock may not have been very thick. Admitting then that gneiss,
mica-schist, granite, diorite, &c, were once necessarily covered up,
how can we account for the naked and extensive areas of such rocks
in many parts of the world, except on the belief that they have
subsequently been completely denuded of all overlying strata? That
such extensive areas do exist cannot be doubted: the granitic region
of Parime is described by Humboldt as being as least nineteen times as
large as Switzerland. South of the Amazon, Boue colours an area
composed of rocks of this nature as equal to that of Spain, France,
Italy, part of Germany, and the British Islands, all conjoined. This
region has not been carefully explored, but from the concurrent
testimony of travellers, the granitic area is very large: thus, von
Eschwege gives a detailed section of these rocks, stretching from
Rio de Janeiro for 260 geographical miles inland in a straight line;
and I travelled for 150 miles in another direction, and saw nothing
but granitic rocks. Numerous specimens, collected along the whole
coast from near Rio de Janeiro to the mouth of the Plata, a distance
of 1100 geographical miles, were examined by me, and they all belonged
to this class. Inland, along the whole northern bank of the Plata I
saw, besides modern tertiary beds, only one small patch of slightly
metamorphosed rock, which alone could have formed a part of the
original capping of the granitic series. Turning to a well-known
region, namely, to the United States and Canada, as shown in Professor
H. D. Rogers's beautiful map, I have estimated the areas by cutting
out and weighing the paper, and I find that the metamorphic (excluding
"the semi-metamorphic") and granitic rocks exceed, in the proportion
of 19 to 12.5, the whole of the newer Palaeozoic formations. In many
regions the metamorphic and granitic rocks would be found much more
widely extended than they appear to be, if all the sedimentary beds
were removed which rest unconformably on them, and which could not
have formed part of the original mantle under which they were
crystallized. Hence it is probable that in some parts of the world
whole formations have been completely denuded, with not a wreck left
behind.
One remark is here worth a passing notice. During periods of
elevation the area of the land and of the adjoining shoal parts of the
sea will be increased, and new stations will often be formed:- all
circumstances favourable, as previously explained, for the formation
of new varieties and species; but during such periods there will
generally be a blank in the geological record. On the other hand,
during subsidence, the inhabited area and number of inhabitants will
decrease (excepting on the shores of a continent when first broken
up into an archipelago), and consequently during subsidence, though
there will be much extinction, few new varieties or species will be
formed; and it is during these very periods of subsidence, that the
deposits which are richest in fossils have been accumulated.
On the Absence of Numerous Intermediate Varieties in any Single
Formation
From these several considerations, it cannot be doubted that the
geological record, viewed as a whole, is extremely imperfect; but if
we confine our attention to any one formation, it becomes much more
difficult to understand why we do not therein find closely graduated
varieties between the allied species which lived at its commencement
and at its close. Several cases are on record of the same species
presenting varieties in the upper and lower parts of the same
formation; thus, Trautschold gives a number of instances with
ammonites; and Hilgendorf has described a most curious case of ten
graduated forms of Planorbis multiformis in the successive beds of a
fresh-water formation in Switzerland. Although each formation has
indisputably required a vast number of years for its deposition,
several reasons can be given why each should not commonly include a
graduated series of links between the species which lived at its
commencement and close; but I cannot assign due proportional weight to
the following considerations.
Although each formation may mark a very long lapse of years, each
probably is short compared with the period requisite to change one
species into another. I am aware that two palaeontologists, whose
opinions are worthy of much deference, namely Bronn and Woodward, have
concluded that the average duration of each formation is twice or
thrice as long as the average duration of specific forms. But
insuperable difficulties, as it seems to me, prevent us from coming to
any just conclusion on this head. When we see a species first
appearing in the middle of any formation, it would be rash in the
extreme to infer that it had not elsewhere previously existed. So
again when we find a species disappearing before the last layers
have been deposited, it would be equally rash to suppose that it
then became extinct. We forget how small the area of Europe is
compared with the rest of the world; nor have the several stages of
the same formation throughout Europe been correlated with perfect
accuracy.
We may safely infer that with marine animals of all kinds there
has been a large amount of migration due to climatal and other
changes; and when we see a species first appearing in any formation,
the probability is that it only then first immigrated into that
area. It is well known, for instance, that several species appear
somewhat earlier in the palaeozoic beds of North America than in those
of Europe; time having apparently been required for their migration
from the American to the European seas. In examining the latest
deposits in various quarters of the world, it has everywhere been
noted, that some few still existing species are common in the deposit,
but have become extinct in the immediately surrounding sea; or,
conversely that some are now abundant in the neighbouring sea, but are
rare or absent in this particular deposit. It is an excellent lesson
to reflect on the ascertained amount of migration of the inhabitants
of Europe during the glacial epoch, which forms only a part of one
whole geological period; and likewise to reflect on the changes of
level, on the extreme change of climate, and on the great lapse of
time, all included within this same glacial period. Yet it may be
doubted whether, in any quarter of the world, sedimentary deposits,
including fossil remains, have gone on accumulating within the same
area during the whole of this period. It is not, for instance,
probable that sediment was deposited during the whole of the glacial
period near the mouth of the Mississippi, within that limit of depth
at which marine animals can best flourish: for we know that great
geographical changes occurred in other parts of America during this
space of time. When such beds as were deposited in shallow water
near the mouth of the Mississippi during some part of the glacial
period shall have been upraised, organic remains will probably first
appear and disappear at different levels, owing to the migrations of
species and to geographical changes. And in the distant future, a
geologist, examining these beds, would be tempted to conclude that the
average duration of life of the embedded fossils had been less than
that of the glacial period, instead of having been really far greater,
that is, extending from before the glacial epoch to the present day.
In order to get a perfect gradation between two forms in the upper
and lower parts of the same formation, the deposit must have gone on
continuously accumulating during a long period, sufficient for the
slow process of modification; hence the deposit must be a very thick
one; and the species, undergoing change must have lived in the same
district throughout the whole time. But we have seen that a thick
formation, fossiliferous throughout its entire thickness, can
accumulate only during a period of subsidence; and to keep the depth
approximately the same, which is necessary that the same marine
species may live on the same space, the supply of sediment must nearly
counterbalance the amount of subsidence. But this same movement of
subsidence will tend to submerge the area whence the sediment is
derived, and thus diminish the supply, whilst the downward movement
continues. In fact, this nearly exact balancing between the supply
of sediment and the amount of subsidence is probably a rare
contingency; for it has been observed by more than one
palaeontologist, that very thick deposits are usually barren of
organic remains, except near their upper or lower limits.
It would seem that each separate formation, like the whole pile of
formations in any country, has generally been intermittent in its
accumulation. When we see, as is so often the case, a formation
composed of beds of widely different mineralogical composition, we may
reasonably suspect that the process of deposition has been more or
less interrupted. Nor will the closest inspection of a formation
give us any idea of the length of time which its deposition may have
consumed. Many instances could be given of beds only a few feet in
thickness, representing formations, which are elsewhere thousands of
feet in thickness, and which must have required an enormous period for
their accumulation; yet no one ignorant of this fact would have even
suspected the vast lapse of time represented by the thinner formation.
Many cases could be given of the lower beds of a formation having been
upraised, denuded, submerged, and then re-covered by the upper beds of
the same formation,- facts, showing what wide, yet easily
overlooked, intervals have occurred in its accumulation. In other
cases we have the plainest evidence in great fossilised trees, still
standing upright as they grew, of many long intervals of time and
changes of level during the process of deposition, which would not
have been suspected, had not the trees been preserved: thus Sir C.
Lyell and Dr. Dawson found carboniferous beds 1400 feet thick in
Nova Scotia, with ancient root-bearing strata, one above the other
at no less than sixty-eight different levels. Hence, when the same
species occurs at the bottom, middle, and top of a formation, the
probability is that it has not lived on the same spot during the whole
period of deposition, but has disappeared and reappeared, perhaps many
times, during the same geological period. Consequently if it were to
undergo a considerable amount of modification during the deposition of
any one geological formation, a section would not include all the fine
intermediate gradations which must on our theory have existed, but
abrupt, though perhaps slight, changes of form.
It is all-important to remember that naturalists have no golden rule
by which to distinguish species and varieties; they grant some
little variability to each species, but when they meet with a somewhat
greater amount of difference between any two forms, they rank both
as species, unless they are enabled to connect them together by the
closest intermediate gradations; and this, from the reasons just
assigned, we can seldom hope to effect in any one geological
section. Supposing B and C to be two species, and a third, A, to be
found in an older and underlying bed; even if A were strictly
intermediate between B and C, it would simply be ranked as a third and
distinct species, unless at the same time it could be closely
connected by intermediate varieties with either one or both forms. Nor
should it be forgotten, as before explained, that A might be the
actual progenitor of B and C, and yet would not necessarily be
strictly intermediate between them in all respects. So that we might
obtain the parent-species, and its several modified descendants from
the lower and upper beds of the same formation, and unless we obtained
numerous transitional gradations, we should not recognise their
blood-relationship, and should consequently rank them as distinct
species.
It is notorious on what excessively slight differences many
palaeontologists have founded their species; and they do this the more
readily if the specimens come from different substages of the same
formation. Some experienced conchologists are now sinking many of
the very fine species of D'Orbigny and others into the rank of
varieties; and on this view we do find the kind of evidence of
change which on the theory we ought to find. Look again at the later
tertiary deposits, which include many shells believed by the
majority of naturalists to be identical with existing species; but
some excellent naturalists as Agassiz and Pictet, maintain that all
these tertiary species are specifically distinct, though the
distinction is admitted to be very slight; so that here, unless we
believe that these eminent naturalists have been misled by their
imaginations, and that these late tertiary species really present no
difference whatever from their living. representatives, or unless we
admit, in opposition to the judgment of most naturalists, that these
tertiary species are all truly distinct from the recent, we have
evidence of the frequent occurrence of slight modifications of the
kind required. It we look to rather wider intervals of time, namely,
to distinct but consecutive stages of the same great formation, we
find that the embedded fossils, though universally ranked as
specifically different, yet are far more closely related to each other
than are the species found in more widely separated formations; so
that here again we have undoubted evidence of change in the
direction required by the theory; but to this latter subject I shall
return in the following chapter.
With animals and plants that propagate rapidly and do not wander
much, there is reason to suspect, as we have formerly seen, that their
varieties are generally at first local; and that such local
varieties do not spread widely and supplant their parent-forms until
they have been modified and perfected in some considerable degree.
According to this view, the chance of discovering in a formation in
any one country all the early stages of transition between any two
forms, is small, for the successive changes are supposed to have
been local or confined to some one spot. Most marine animals have a
wide range; and we have seen that with plants it is those which have
the widest range, that oftenest present varieties; so that, with
shells and other marine animals, it is probable that those which had
the widest range, far exceeding the limits of the known geological
formations in Europe, have oftenest given rise, first to local
varieties and ultimately to new species; and this again would
greatly lessen the chance of our being able trace the stages of
transition in any one geological formation.
It is a more important consideration, leading to the same result, as
lately insisted on by Dr. Falconer, namely, that the period during
which each species underwent modification, though long as measured
by years, was probably short in comparison with that during which it
remained without undergoing any change.
It should not be forgotten, that at the present day, with perfect
specimens for examination, two forms can seldom be connected by
intermediate varieties, and thus proved to be the same species,
until many specimens are collected from many places; and with fossil
species this can rarely be done. We shall, perhaps, best perceive
the improbability of our being enabled to connect species by numerous,
fine, intermediate, fossil links, by asking ourselves whether, for
instance, geologists at some future period will be able to prove
that our different breeds of cattle, sheep, horses, and dogs are
descended from a single stock or from several aboriginal stocks; or,
again, whether certain sea-shells inhabiting the shores of North
America, which are ranked by some conchologists as distinct species
from their European representatives, and by other conchologists as
only varieties, are really varieties, or are, as it is called,
specifically distinct. This could be effected by the future
geologist only by his discovering in a fossil state numerous
intermediate gradations; and such success is improbable in the highest
degree.
It has been asserted over and over again, by writers who believe
in the immutability of species, that geology yields no linking
forms. This assertion, as we shall see in the next chapter, is
certainly erroneous. As Sir J. Lubbock has remarked, "Every species is
a link between other allied forms." If we take a genus having a
score of species, recent and extinct, and destroy four-fifths of them,
no one doubts that the remainder will stand much more distinct from
each other. If the extreme forms in the genus happen to have been thus
destroyed, the genus itself will stand more distinct from other allied
genera. What geological research has not revealed, is the former
existence of infinitely numerous gradations, as fine as existing
varieties, connecting together nearly all existing and extinct
species. But this ought not to be expected; yet this has been
repeatedly advanced as a most serious objection against my views.
It may be worth while to sum up the foregoing remarks on the
causes of the imperfection of the geological record under an imaginary
illustration. The Malay Archipelago is about the size of Europe from
the North Cape to the Mediterranean, and from Britain to Russia; and
therefore equals all the geological formations which have been
examined with any accuracy, excepting those of the United States of
America. I fully agree with Mr. Godwin-Austen, that the present
condition of the Malay Archipelago, with its numerous large islands
separated by wide and shallow seas, probably represents the former
state of Europe, whilst most of our formations were accumulating.
The Malay Archipelago is one of the richest regions in organic beings;
yet if all the species were to be collected which have ever lived
there, how imperfectly would they represent the natural history of the
world!
But we have every reason to believe that the terrestrial productions
of the archipelago would be preserved in an extremely imperfect manner
in the formations which we suppose to be there accumulating. Not
many of the strictly littoral animals, or of those which lived on
naked submarine rocks, would be embedded; and those embedded in gravel
or sand would not endure to a distant epoch. Wherever sediment did not
accumulate on the bed of the sea, or where it did not accumulate at
a sufficient rate to protect organic bodies from decay, no remains
could be preserved.
Formations rich in fossils of many kinds, and of thickness
sufficient to last to an age as distant in futurity as the secondary
formations lie in the past, would generally be formed in the
archipelago only during periods of subsidence. These periods of
subsidence would be separated from each other by immense intervals
of time, during which the area would be either stationary or rising;
whilst rising, the fossiliferous formations on the steeper shores
would be destroyed, almost as soon as accumulated, by the incessant
coast-action, as we now see on the shores of South America. Even
throughout the extensive and shallow seas within the archipelago,
sedimentary beds could hardly be accumulated of great thickness during
the periods of elevation, or become capped and protected by subsequent
deposits, so as to have a good chance of enduring to a very distant
future. During the periods of subsidence, there would probably be much
extinction of life; during the periods of elevation, there would be
much variation, but the geological record would then be less perfect.
It may be doubted whether the duration of any one great period of
subsidence over the whole or part of the archipelago, together with
a contemporaneous accumulation of sediment, would exceed the average
duration of the same specific forms; and these contingencies are
indispensable for the preservation of all the transitional
gradations between any two or more species. If such gradations were
not all fully preserved, transitional varieties would merely appear as
so many new, though closely allied species. It is also probable that
each great period of subsidence would be interrupted by oscillations
of level, and that slight climatal changes would intervene during such
lengthy periods; and in these cases the inhabitants of the archipelago
would migrate, and no closely consecutive record of their
modifications could be preserved in any one formation.
Very many of the marine inhabitants of the archipelago now range
thousands of miles beyond its confines; and analogy plainly leads to
the belief that it would be chiefly these far ranging species,
though only some of them, which would oftenest produce new
varieties; and the varieties would at first be local or confined to
one place, but if possessed of any decided advantage, or when
further modified and improved, they would slowly spread and supplant
their parent-forms. When such varieties returned to their ancient
homes, as they would differ from their former state in a nearly
uniform, though perhaps extremely slight degree, and as they would
be found embedded in slightly different sub-stages of the same
formation, they would, according to the principles followed by many
palaeontologists, be ranked as new and distinct species.
If then there be some degree of truth in these remarks, we have no
right to expect to find, in our geological formations, an infinite
number of those fine transitional forms which, on our theory, have
connected all the past and present species of the same group into
one long and branching chain of life. We ought only to look for a
few links, and such assuredly we do find- some more distantly, some
more closely, related to each other; and these links, let them be ever
so close, if found in different stages of the same formation, would,
by many palaeontologists, be ranked as distinct species. But I do
not pretend that I should ever have suspected how poor was the
record in the best preserved geological sections, had not the
absence of innumerable transitional links between the species which
lived at the commencement and close of each formation, pressed so
hardly on my theory.
On the sudden Appearance of whole Groups of allied Species
The abrupt manner in which whole groups of species suddenly appear
in certain formations, has been urged by several palaeontologists- for
instance, by Agassiz, Pictet, and Sedgwick- as a fatal objection to
the belief in the transmutation of species. If numerous species,
belonging to the same genera or families, have really started into
life at once, the fact would be fatal to the theory of evolution
through natural selection. For the development by this means of a
group of forms, all of which are descended from some one progenitor,
must have been an extremely slow process; and the progenitors must
have lived long before their modified descendants. But we
continually overrate the perfection of the geological record, and
falsely infer, because certain genera or families have not been
found beneath a certain stage, that they did not exist before that
stage. In all cases positive palaeontological evidence may be
implicitly trusted; negative evidence is worthless, as experience
has so often shown. We continually forget how large the world is,
compared with the area over which our geological formations have
been carefully examined; we forget that groups of species may
elsewhere have long existed, and have slowly multiplied, before they
invaded the ancient archipelagoes of Europe and the United States.
We do not make due allowance for the intervals of time which have
elapsed between our consecutive formations,- longer perhaps in many
cases than the time required for the accumulation of each formation.
These intervals will have given time for the multiplication of species
from some one parent-form: and in the succeeding formation, such
groups or species will appear as if suddenly created.
I may here recall a remark formerly made, namely, that it might
require a long succession of ages to adapt an organism to some new and
peculiar line of life, for instance, to fly through the air; and
consequently that the transitional forms would often long remain
confined to some one region; but that, when this adaptation had once
been effected, and a few species had thus acquired a great advantage
over other organisms, a comparatively short time would be necessary to
produce many divergent forms, which would spread rapidly and widely,
throughout the world. Professor Pictet, in his excellent review of
this work, in commenting on early transitional forms, and taking birds
as an illustration, cannot see how the successive modifications of the
anterior limbs of a supposed prototype could possibly have been of any
advantage. But look at the penguins of the Southern Ocean; have not
these birds their front limbs in this precise intermediate state of
"neither true arms nor true wings"? Yet these birds hold their place
victoriously in the battle for life; for they exist in infinite
numbers and of many kinds. I do not suppose that we here see the
real transitional grades through which the wings of birds have passed;
but what special difficulty is there in believing that it might profit
the modified descendants of the penguin, first to become enabled to
flap along the surface of the sea like the logger-headed duck, and
ultimately to rise from its surface and glide through the air?
I will now give a few examples to illustrate the foregoing
remarks, and to show how liable we are to error in supposing that
whole groups of species have suddenly been produced. Even in so
short an interval as that between the first and second editions of
Pictet's great work on Palaeontology, published in 1844-46 and in
1853-57, the conclusions on the first appearance and disappearance
of several groups of animals have been considerably modified; and a
third edition would require still further changes. I may recall the
well-known fact that in geological treatises, published not many years
ago, mammals were always spoken of as having abruptly come in at the
commencement of the tertiary series. And now one of the richest
known accumulations of fossil mammals belongs to the middle of the
secondary series; and true mammals have been discovered in the new red
sandstone at nearly the commencement of this great series. Cuvier used
to urge that no monkey occurred in any tertiary stratum; but now
extinct species have been discovered in India, South America and in
Europe, as far back as the miocene stage. Had it not been for the rare
accident of the preservation of the footsteps in the new red sandstone
of the United States, who would have ventured to suppose that no
less than at least thirty different bird-like animals, some of
gigantic size, existed during that period? Not a fragment of bone
has been discovered in these beds. Not long ago, palaeontologists
maintained that the whole class of birds came suddenly into
existence during the eocene period; but now we know, on the
authority of Professor Owen, that a bird certainly lived during the
deposition of the upper greensand; and still more recently, that
strange bird, the Archeopteryx, with a long lizard-like tail,
bearing a pair of feathers on each joint, and with its wings furnished
with two free claws, has been discovered in the oolitic slates of
Solenhofen. Hardly any recent discovery shows more forcibly than this,
how little we as yet know of the former inhabitants of the world.
I may give another instance, which, from having passed under my
own eyes, has much struck me. In a memoir On Fossil Sessile
Cirripedes, I stated that, from the large number of existing and
extinct tertiary species; from the extraordinary abundance of the
individuals of many species all over the world, from the Arctic
regions to the equator, inhabiting various zones of depths from the
upper tidal limits to 50 fathoms; from the perfect manner in which
specimens are preserved in the oldest tertiary beds; from the ease
with which even a fragment of a valve can be recognised; from all
these circumstances, I inferred that, had sessile cirripedes existed
during the secondary periods, they would certainly have been preserved
and discovered; and as not one species had then been discovered in
beds of this age, I concluded that this great group had been
suddenly developed at the commencement of the tertiary series. This
was a sore trouble to me, adding as I then thought one more instance
of the abrupt appearance of a great group of species. But my work
had hardly been published, when a skilful palaeontologist, M. Bosquet,
sent me a drawing of a perfect specimen of an unmistakable sessile
cirripede, which he had himself extracted from the chalk of Belgium.
And, as if to make the case as striking as possible, this cirripede
was a Chthamalus, a very common, large, and ubiquitous genus, of which
not one species has as yet been found even in any tertiary stratum.
Still more recently, a Pyrgoma, a member of a distinct subfamily of
sessile cirripedes, has been discovered by Mr. Woodward in the upper
chalk; so that we now have abundant evidence of the existence of
this group of animals during the secondary period.
The case most frequently insisted on by palaeontologists of the
apparently sudden appearance of a whole group of species, is that of
the teleostean fishes, low down, according to Agassiz, in the Chalk
period. This group includes the large majority of existing species.
But certain Jurassic and Triassic forms are now commonly admitted to
be teleostean; and even some palaeozoic forms have thus been classed
by one high authority. If the teleosteans had really appeared suddenly
in the northern hemisphere at the commencement of the chalk
formation the fact would have been highly remarkable; but it would not
have formed an insuperable difficulty, unless it could likewise have
been shown that at the same period the species were suddenly and
simultaneously developed in other quarters of the world. It is
almost superfluous to remark that hardly any fossil-fish are known
from south of the equator; and by running through Pictet's
Palaeontology it will be seen that very few species are known from
several formations in Europe. Some few families of fish now have a
confined range; the teleostean fishes might formerly have had a
similarly confined range, and after having been largely developed in
some one sea, have spread widely. Nor have we any right to suppose
that the seas of the world have always been so freely open from
south to north as they are at present. Even at this day, if the
Malay Archipelago were converted into land, the tropical parts of
the Indian Ocean would form a large and perfectly enclosed basin, in
which any great group of marine animals might be multiplied: and
here they would remain confined, until some of the species became
adapted to a cooler climate, and were enabled to double the Southern
capes of Africa or Australia, and thus reach other and distant seas.
From these considerations, from our ignorance of the geology of
other countries beyond the confines of Europe and the United States,
and from the revolution in our palaeontological knowledge effected
by the discoveries of the last dozen years, it seems to me to be about
as rash to dogmatize on the succession of organic forms throughout the
world, as it would be for a naturalist to land for five minutes on a
barren point in Australia, and then to discuss the number and range of
its productions.
On the Sudden Appearance of Groups of allied Species in the lowest
known Fossiliferous Strata
There is another and allied difficulty, which is much more
serious. I allude to the manner in which species belonging to
several of the main divisions of the animal kingdom suddenly appear in
the lowest known fossiliferous rocks. Most of the arguments which have
convinced me that all the existing species of the same group are
descended from a single progenitor, apply with equal force to the
earliest known species. For instance, it cannot be doubted that all
the Cambrian and Silurian trilobites are descended from some one
crustacean, which must have lived long before the Cambrian age, and
which probably differed greatly from any known animal. Some of the
most ancient animals, as the Nautilus, Lingula, &c., do not differ
much from living species; and it cannot on our theory be supposed,
that these old species were the progenitors of all the species
belonging to the same groups which have subsequently appeared, for
they are not in any degree intermediate in character.
Consequently, if the theory be true, it is indisputable that
before the lowest Cambrian stratum was deposited, long periods
elapsed, as long as, or probably far longer than, the whole interval
from the Cambrian age to the present day; and that during these vast
periods the world swarmed with living creatures. Here we encounter a
formidable objection; for it seems doubtful whether the earth, in a
fit state for the habitation of living creatures, has lasted long
enough. Sir W. Thompson concludes that the consolidation of the
crust can hardly have occurred less than 20 or more than 400 million
years ago, but probably not less than 98 or more than 200 million
years. These very wide limits show how doubtful the data are; and
other elements may have hereafter to be introduced into the problem.
Mr. Croll estimates that about 60 million years have elapsed since the
Cambrian period, but this, judging from the small amount of organic
change since the commencement of the Glacial epoch, appears a very
short time for the many and great mutations of life, which have
certainly occurred since the Cambrian formation; and the previous
140 million years can hardly be considered as sufficient for the
development of the varied forms of life which already existed during
the Cambrian period. It is, however, probable, as Sir William Thompson
insists, that the world at a very early period was subjected to more
rapid and violent changes in its physical conditions than those now
occurring; and such changes would have tended to induce changes at a
corresponding rate in the organisms which then existed.
To the question why we do not find rich fossiliferous deposits
belonging to these assumed earliest periods prior to the Cambrian
system, I can give no satisfactory answer. Several eminent geologists,
with Sir R. Murchison at their head, were until recently convinced
that we beheld in the organic remains of the lowest Silurian stratum
the first dawn of life. Other highly competent judges, as Lyell and E.
Forbes, have disputed this conclusion. We should not forget that
only a small portion of the world is known with accuracy. Not very
long ago M. Barrande added another and lower stage, abounding with new
and peculiar species, beneath the then known Silurian system; and now,
still lower down in the Lower Cambrian formation, Mr. Hicks has
found in South Wales beds rich in trilobites, and containing various
molluscs and annelids. The presence of phosphatic nodules and
bituminous matter, even in some of the lowest azoic rocks, probably
indicates life at these periods; and the existence of the Eozoon in
the Laurentian formation of Canada is generally admitted. There are
three great series of strata beneath the Silurian system in Canada, in
the lowest of which the Eozoon is found. Sir W. Logan states that
their "united thickness may possibly far surpass that of all the
succeeding rocks, from the base of the palaeozoic series to the
present time. We are thus carried back to a period so remote, that the
appearance of the so-called primordial fauna (of Barrande) may by some
be considered as a comparatively modern event." The Eozoon belongs
to the most lowly organised, of all classes of animals, but is
highly organised for its class; it existed in countless numbers,
and, as Dr. Dawson has remarked, certainly preyed on other minute
organic beings, which must have lived in great numbers. Thus the
words, which I wrote in 1859, about the existence of living beings
long before the Cambrian period, and which are almost the same with
those since used by Sir W. Logan, have proved true. Nevertheless,
the difficulty of assigning any good reason for the absence of vast
piles of strata rich in fossils beneath the Cambrian system is very
great. It does not seem probable that the most ancient beds have
been quite worn away by denudation, or that their fossils have been
wholly obliterated by metamorphic action, for if this had been the
case we should have found only small remnants of the formations next
succeeding them in age, and these would always have existed in
partially metamorphosed condition. But the descriptions which we
possess of the Silurian deposits over immense territories in Russia
and in North America, do not support the view, that the older a
formation is, the more invariably it has suffered extreme denudation
and metamorphism.
The case at present must remain inexplicable; and may be truly urged
as a valid argument against the views here entertained. To show that
it may hereafter receive some explanation, I will give the following
hypothesis. From the nature of the organic remains which do not appear
to have inhabited profound depths, in the several formations of Europe
and of the United States; and from the amount of sediment, miles in
thickness, of which the formations are composed, we may infer that
from first to last large islands or tracts of land, whence the
sediment was derived, occurred in the neighbourhood of the now
existing continents of Europe and North America. This same view has
since been maintained by Agassiz and others. But we do not know what
was the state of things in the intervals between the several
successive formations; whether Europe and the United States during
these intervals existed as dry land, or as a submarine surface near
land, on which sediment was not deposited, or as the bed of an open
and unfathomable sea.
Looking to the existing oceans, which are thrice as extensive as the
land, we see them studded with many islands; but hardly one truly
oceanic island (with the exception of New Zealand, if this can be
called a truly oceanic island) is as yet known to afford even a
remnant of any palaeozoic or secondary formation. Hence we may perhaps
infer, that during the palaeozoic and secondary periods, neither
continents nor continental islands existed where our oceans now
extend; for had they existed, palaeozoic and secondary formations
would in all probability have been accumulated from sediment derived
from their wear and tear; and these would have been at least partially
upheaved by the oscillations of level, which must have intervened
during these enormously long periods. If then we may infer anything
from these facts, we may infer that, where our oceans now extend,
oceans have extended from the remotest period of which we have any
record; and on the other hand, that where continents now exist,
large tracts of land have existed, subjected no doubt to great
oscillations of level, since the Cambrian period. The coloured map
appended to my volume on coral reefs, led me to conclude that the
great oceans are still mainly areas of subsidence, the great
archipelagoes still areas of oscillations of level, and the continents
areas of elevation. But we have no reason to assume that things have
thus remained from the beginning of the world. Our continents seem
to have been formed by a preponderance, during many oscillations of
level, of the force of elevation; but may not the areas of
preponderant movement have changed in the lapse of ages? At a period
long antecedent to the Cambrian epoch, continents may have existed
where oceans are now spread out; and clear and open oceans may have
existed where our continents now stand. Nor should we be justified
in assuming that if, for instance, the bed of the Pacific Ocean were
now converted into a continent we should there find sedimentary
formations in a recognisable condition older than the Cambrian strata,
supposing such to have been formerly deposited; for it might well
happen that strata which had subsided some miles nearer to the
centre of the earth, and which had been pressed on by an enormous
weight of super-incumbent water, might have undergone far more
metamorphic action than strata which have always remained nearer to
the surface. The immense areas in some parts of the world, for
instance in South America, of naked metamorphic rocks, which must have
been heated under great pressure, have always seemed to me to
require some special explanation; and we may perhaps believe that we
see in these large areas, the many formations long anterior to the
Cambrian epoch in a completely metamorphosed and denuded condition.
The several difficulties here discussed, namely- that, though we
find in our geological formations many links between the species which
now exist and which formerly existed, we do not find infinitely
numerous fine transitional forms closely joining them all together;-
the sudden manner in which several groups of species first appear in
our European formations;- the almost entire absence, as at present
known, of formations rich in fossils beneath the Cambrian strata,- are
all undoubtedly of the most serious nature. We see this in the fact
that the most eminent palaeontologists, namely Cuvier, Agassiz,
Barrande, Pictet, Falconer, E. Forbes, &c., and all our greatest
geologists, as Lyell, Murchison, Sedgwick, &c., have unanimously,
often vehemently, maintained the immutability of species. But Sir
Charles Lyell now gives the support of his high authority to the
opposite side; and most geologists and palaeontologists are much
shaken in their former belief. Those who believe that the geological
record is in any degree perfect, will undoubtedly at once reject the
theory. For my part, following out Lyell's metaphor, I look at the
geological record as a history of the world imperfectly kept, and
written in a changing dialect; of this history we possess the last
volume alone, relating only to two or three countries. Of this volume,
only here and there a short chapter has been preserved; and of each
page, only here and there a few lines. Each word of the
slowly-changing language, more or less different in the successive
chapters, may represent the forms of life, which are entombed in our
consecutive formations, and which falsely appear to have been abruptly
introduced. On this view, the difficulties above discussed are greatly
diminished, or even disappear.
To flip through the pages of my BOS faster...
|