A great deal of talent is lost to the world for want of a little courage. Every day sends to their graves obscure men whose timidity prevented them from making a first effort.
-Sydney Smith
Chapter 12: Geographical Distribution
By: Charles Darwin, 1859
IN considering the distribution of organic beings over the face of
the globe, the first great fact which strikes us is, that neither
the similarity nor the dissimilarity of the inhabitants of various
regions can be wholly accounted for by climatal and other physical
conditions. Of late, almost every author who has studied the subject
has come to this conclusion. The case of America alone would almost
suffice to prove its truth; for if we exclude the arctic and
northern temperate parts, all authors agree that one of the most
fundamental divisions in geographical distribution is that between the
New and Old Worlds; yet if we travel over the vast American continent,
from the central parts of the United States to its extreme southern
point, we meet with the most diversified conditions; humid
districts, arid deserts, lofty mountains, grassy plains, forests,
marshes, lakes, and great rivers, under almost every temperature.
There is hardly a climate or condition in the Old World which cannot
be paralleled in the New- at least as closely as the same species
generally require. No doubt small areas can be pointed out in the
Old World hotter than any in the New World; but these are not
inhabited by a fauna different from that of the surrounding
districts; for it is rare to find a group of organisms confined to a
small area, of which the conditions are peculiar in only a slight
degree. Notwithstanding this general parallelism in the conditions
of the Old and New Worlds, how widely different are their living
productions!
In the southern hemisphere, if we compare large tracts of land in
Australia, South Africa, and western South America, between
latitudes 25 and 35, we shall find parts extremely similar in all
their conditions, yet it would not be possible to point out three
faunas and floras more utterly dissimilar. Or, again, we may compare
the productions of South America south of lat. 35 with those north
of 25, which consequently are separated by a space of ten degrees of
latitude, and are exposed to considerably different conditions; yet
they are incomparably more closely related to each other than they are
to the productions of Australia or Africa under nearly the same
climate. Analogous facts could be given with respect to the
inhabitants of the sea.
A second great fact which strikes us in our general review is,
that barriers of any kind, or obstacles to free migration, are related
in a close and important manner to the differences between the
productions of various regions. We see this in the great difference in
nearly all the terrestrial productions of the New and Old Worlds,
excepting in the northern parts, where the land almost joins, and
where, under a slightly different climate, there might have been
free migration for the northern temperate forms, as there now is for
the strictly arctic productions. We see the same fact in the great
difference between the inhabitants of Australia, Africa, and South
America under the same latitude; for these countries are almost as
much isolated from each other as is possible. On each continent, also,
we see the same fact; for on the opposite sides of lofty and
continuous mountain-ranges, of great deserts and even of large rivers,
we find different productions; though as mountain-chains, deserts,
&c., are not as impassable, or likely to have endured so long, as
the oceans separating continents, the differences are very inferior in
degree to those characteristic of distinct continents.
Turning to the sea, we find the same law. The marine inhabitants
of the eastern and western shores of South America are very
distinct, with extremely few shells, Crustacea, or Echinodermata in
common; but Dr. Gunther has recently shown that about thirty per cent.
of the fishes are the same on the opposite sides of the isthmus of
Panama; and this fact has led naturalists to believe that the
isthmus was formerly open. Westward of the shores of America, a wide
space of open ocean extends, with not an island as a halting-place for
emigrants; here we have a barrier of another kind, and as soon as this
is passed we meet in the eastern islands of the Pacific with another
and totally distinct fauna. So that three marine faunas range far
northward and southward in parallel lines not far from each other,
under corresponding climates; but from being separated from each other
by impassable barriers, either of land or open sea, they are almost
wholly distinct. On the other hand, proceeding still farther
westward from the eastern islands of the tropical parts of the
Pacific, we encounter no impassable barriers, and we have
innumerable islands as halting-places, or continuous coasts, until,
after travelling over a hemisphere, we come to the shores of Africa;
and over this vast space we meet with no well-defined and distinct
marine faunas. Although so few marine animals are common to the
above-named three approximate faunas of eastern and western America
and the eastern Pacific islands, yet many fishes range from the
Pacific into the Indian Ocean, and many shells are common to the
eastern islands of the Pacific and the eastern shores of Africa on
almost exactly opposite meridians of longitude.
A third great fact, partly included in the foregoing statement, is
the affinity of the productions of the same continent or of the same
sea, though the species themselves are distinct at different points
and stations. It is a law of the widest generality, and every
continent offers innumerable instances. Nevertheless the naturalist,
in travelling, for instance, from north to south, never fails to be
struck by the manner in which successive groups of beings,
specifically distinct, though nearly related, replace each other. He
hears from closely allied, yet distinct kinds of birds, notes nearly
similar, and sees their nests similarly constructed, but not quite
alike, with eggs coloured in nearly the same manner. The plains near
the Straits of Magellan are inhabited by one species of Rhea (American
ostrich) and northward the plains of La Plata by another species of
the same genus; and not by a true ostrich or emu, like those
inhabiting Africa and Australia under the same latitude. On these
same plains of La Plata we see the agouti and bizcacha, animals having
nearly the same habits as our hares and rabbits, and belonging to
the same order of rodents, but they plainly display an American type
of structure. We ascend the lofty peaks of the Cordillera, and we find
an alpine species of bizcacha; we look to the waters, and we do not
find the beaver or musk-rat, but the coypu and capybara, rodents of
the S. American type. Innumerable other instances could be given. If
we look to the islands off the American shore, however much they may
differ in geological structure, the inhabitants are essentially
American, though they may be all peculiar species. We may look back to
past ages, as shown in the last chapter, and we find American types
then prevailing on the American continent and in the American seas. We
see in these facts some deep organic bond, throughout space and
time, over the same areas of land and water, independently of physical
conditions. The naturalist must be dull who is not led to enquire
what this bond is.
The bond is simply inheritance, that cause which alone, as far as we
positively know, produces organisms quite like each other, or, as we
see in the case of varieties, nearly alike. The dissimilarity of the
inhabitants of different regions may be attributed to modification
through variation and natural selection, and probably in a subordinate
degree to the definite influence of different physical conditions. The
degrees of dissimilarity will depend on the migration of the more
dominant forms of life from one region into another having been more
or less effectually prevented, at periods more or less remote;- on the
nature and number of the former immigrants;- and on the action of
the inhabitants on each other in leading to the preservation of
different modifications; the relation of organism to organism in the
struggle for life being, as I have already often remarked, the most
important of all relations. Thus the high importance of barriers
comes into play by checking migration; as does time for the slow
process of modification through natural selection. Widely-ranging
species, abounding in individuals, which have already triumphed over
many competitors in their own widely-extended homes, will have the
best chance of seizing on new places, when they spread into new
countries. In their new homes they will be exposed to new
conditions, and will frequently undergo further modification and
improvement; and thus they will become still further victorious, and
will produce groups of modified descendants. On this principle of
inheritance with modification we can understand how it is that
sections of genera, whole genera, and even families, are confined to
the same areas, as is so commonly and notoriously the case.
There is no evidence, as was remarked in the last chapter, of the
existence of any law of necessary development. As the variability of
each species is an independent property, and will be taken advantage
of by natural selection, only so far as it profits each individual
in its complex struggle for life, so the amount of modification in
different species will be no uniform quantity. If a number of species,
after having long competed with each other in their old home, were
to migrate in a body into a new and afterwards isolated country,
they would be little liable to modification; for neither migration nor
isolation in themselves effect anything. These principles come into
play only by bringing organisms into new relations with each other and
in a lesser degree with the surrounding physical conditions. As we
have seen in the last chapter that some forms have retained nearly the
same character from an enormously remote geological period, so certain
species have migrated over vast spaces, and have not become greatly or
at all modified.
According to these views, it is obvious that the several species
of the same genus, though inhabiting the most distant quarters of
the world, must originally have proceeded from the same source, as
they are descended from the same progenitor. In the case of those
species which have undergone during the whole geological periods
little modification, there is not much difficulty in believing that
they have migrated from, the same region; for during the vast
geographical and climatal changes which have supervened since
ancient times, almost any amount of migration is possible. But in many
other cases, in which we have reason to believe that the species of
a genus have been produced within comparatively recent times, there is
great difficulty on this head. It is also obvious that the
individuals of the same species, though now inhabiting distant and
isolated regions, must have proceeded from one spot, where their
parents were first produced: for, as has been explained, it is
incredible that individuals identically the same should have been
produced from parents specifically distinct.
Single Centres of supposed Creation.- We are thus brought to the
question which has been largely discussed by naturalists, namely,
whether species have been created at one or more points of the earth's
surface. Undoubtedly there are many cases of extreme difficulty in
understanding how the same species could possibly have migrated from
some one point to the several distant and isolated points, where now
found. Nevertheless the simplicity of the view that each species was
first produced within a single region captivates the mind. He who
rejects it, rejects the vera causa of ordinary generation with
subsequent migration, and calls in the agency of a miracle. It is
universally admitted, that in most cases the area inhabited by a
species is continuous; and that when a plant or animal inhabits two
points so distant from each other, or with an interval of such a
nature, that the space could not have been easily passed over by
migration, the fact is given as something remarkable and
exceptional. The incapacity of migrating across a wide sea is more
clear in the case of terrestrial mammals than perhaps with any other
organic beings; and, accordingly, we find no inexplicable instances of
the same mammals inhabiting distant points of the world. No
geologist feels any difficulty in Great Britain possessing the same
quadrupeds with the rest of Europe, for they were no doubt once
united. But if the same species can be produced at two separate
points, why do we not find a single mammal common to Europe and
Australia or South America? The conditions of life are nearly the
same, so that a multitude of European animals and plants have become
naturalised in America and Australia; and some of the aboriginal
plants are identically the same at these distant points of the
northern and southern hemispheres. The answer, as I believe, is,
that mammals have not been able to migrate, whereas some plants,
from their varied means of dispersal, have migrated across the wide
and broken interspaces. The great and striking influence of barriers
of all kinds, is intelligible only on the view that the great majority
of species have been produced on one side, and have not been able to
migrate to the opposite side. Some few families, many sub-families,
very many genera, and a still greater number of sections of genera,
are confined to a single region; and it has been observed by several
naturalists that the most natural genera, or those genera in which the
species are most closely related to each other, are generally confined
to the same, country, or if they have a wide range that their range is
continuous. What a strange anomaly it would be, if a directly
opposite rule were to prevail, when we go down one step lower in the
series, namely, to the individuals of the same species, and these
had not been, at least at first, confined to some one region!
Hence it seems to me, as it has to many other naturalists, that
the view of each species having been produced in one area alone, and
having subsequently migrated from that area as far as its powers of
migration and subsistence under past and present conditions permitted,
is the most probable. Undoubtedly many cases occur, in which we cannot
explain how the same species could have passed from one point to the
other. But the geographical and climatal changes which have
certainly occurred within recent geological times, must have
rendered discontinuous the formerly continuous range of many
species. So that we are reduced to consider whether the exceptions
to continuity of range are so numerous and of so grave a nature,
that we ought to give up the belief, rendered probable by general
considerations, that each species has been produced within one area,
and has migrated thence as far as it could. It would be hopelessly
tedious to discuss all the exceptional cases of the same species,
now living at distant and separated points, nor do I for a moment
pretend that any explanation could be offered of many instances.
But, after some preliminary remarks, I will discuss a few of the
most striking classes of facts; namely, the existence of the same
species on the summits of distant mountain ranges, and at distant
points in the arctic and antarctic regions; and secondly (in the
following chapter), the wide distribution of fresh-water
productions; and thirdly, the occurrence of the same terrestrial
species on islands and on the nearest mainland, though separated by
hundreds of miles of open sea. If the existence of the same species at
distant and isolated points of the earth's surface, can in many
instances be explained on the view of each species having migrated
from a single birthplace; then, considering our ignorance with respect
to former climatal and geographical changes and to the various
occasional means of transport, the belief that a single birthplace
is the law, seems to me incomparably the safest.
In discussing this subject, we shall be enabled at the same time
to consider a point equally important for us, namely, whether the
several species of a genus which must on our theory all be descended
from a common progenitor, can have migrated, undergoing modification
during their migration, from some one area. If, when most of the
species inhabiting one region are different from those of another
region, though closely allied to them, it can be shown that
migration from the one region to the other has probably occurred at
some former period, our general view will be much strengthened; for
the explanation is obvious on the principle of descent with
modification. A volcanic island, for instance, upheaved and formed
at the distance of a few hundreds of miles from a continent, would
probably receive from it in the course of time a few colonists, and
their descendants, though modified, would still be related by
inheritance to the inhabitants of that continent. Cases of this nature
are common, and are, as we shall hereafter see, inexplicable on the
theory of independent creation. This view of the relation of the
species of one region to those of another, does not differ much from
that advanced by Mr. Wallace, who concludes that "every species has
come into existence coincident both in space and time with a
pre-existing closely allied species." And it is now well known that he
attributes this coincidence to descent with modification.
The question of single or multiple centres of creation differs
from another though allied question,- namely, whether all the
individuals of the same species are descended from a single pair, or
single hermaphrodite, or whether, as some authors suppose, from many
individuals simultaneously created. With organic beings which never
intercross, if such exist, each species must be descended from a
succession of modified varieties, that have supplanted each other, but
have never blended with other individuals or varieties of the same
species; so that, at each successive stage of modification, all the
individuals of the same form will be descended from a single parent.
But in the great majority of cases, namely, with all organisms which
habitually unite for each birth, or which occasionally intercross, the
individuals of the same species inhabiting the same area will be
kept nearly uniform by intercrossing; so that many individuals will go
on simultaneously changing, and the whole amount of modification at
each stage will not be due to descent from a single parent. To
illustrate what I mean: our English race-horses differ from the horses
of every other breed; but they do not owe their difference and
superiority to descent from any single pair, but to continued care
in the selecting and training of many individuals during each
generation.
Before discussing the three classes of facts, which I have
selected as presenting the greatest amount of difficulty on the theory
of "single centres of creation," I must say a few words on the means
of dispersal.
Means of Dispersal
Sir C. Lyell and other authors have ably treated this subject. I can
give here only the briefest abstract of the more important facts.
Change of climate must have had a powerful influence on migration. A
region now impassable to certain organisms from the nature of its
climate, might have been a high road for migration, when the climate
was different. I shall, however, presently have to discuss this branch
of the subject in some detail. Changes of level in the land must
also have been highly influential: a narrow isthmus now separates
two marine faunas; submerge it, or let it formerly have been
submerged, and the two faunas will now blend together, or may formerly
have blended. Where the sea now extends, land may at a former period
have connected islands or possibly even continents together, and
thus have allowed terrestrial productions to pass from one to the
other No geologist disputes that great mutations of level have
occurred within the period of existing organisms. Edward Forbes
insisted that all the islands in the Atlantic must have been
recently connected with Europe or Africa, and Europe likewise with
America. Other authors have thus hypothetically bridged over every
ocean, and united almost every island with some mainland. If indeed
the arguments used by Forbes are to be trusted, it must be admitted
that scarcely a single island exists which has not recently been
united to some continent. This view cuts the Gordian knot of the
dispersal of the same species to the more distant points, and
removes many a difficulty; but to the best of my judgment we are not
authorised in admitting such enormous geographical changes within
the period of existing species. It seems to me that we have abundant
evidence of great oscillations in the level of the land or sea; but
not of such vast change in the position and extension of our
continents, as to have united them within the recent period to each
other and to the several intervening oceanic islands. I freely admit
the former existence of many islands, now buried beneath the sea,
which may have served as halting-places for plants and for many
animals during their migration. In the coral-producing oceans such
sunken islands are now marked by rings of coral or atolls standing
over them. Whenever it is fully admitted, as it will some day be, that
each species has proceeded from a single birthplace, and when in the
course of time we know something definite about the means of
distribution, we shall be enabled to speculate with security on the
former extension of the land. But I do not believe that it will ever
be proved that within the recent period most of our continents which
now stand quite separate have been continuously, or almost
continuously united with each other, and with the many existing
oceanic islands. Several facts in distribution,- such as the great
difference in the marine faunas on the opposite sides of almost
every continent,- the close relation of the tertiary inhabitants of
several lands and even seas to their present inhabitants,- the
degree of affinity between the mammals inhabiting islands with those
of the nearest continent, being in part determined (as we shall
hereafter see) by the depth of the intervening ocean,- these and other
such facts are opposed to the admission of such prodigious
geographical revolutions within the recent period, as are necessary on
the view advanced by Forbes and admitted by his followers. The
nature and relative proportions of the inhabitants of oceanic
islands are likewise opposed to the belief of their former
continuity with continents. Nor does the almost universally volcanic
composition of such islands favour the admission that they are the
wrecks of sunken continents;- if they had originally existed as
continental mountain ranges, some at least of the islands would have
been formed, like other mountain summits, of granite, metamorphic
schists, old fossiliferous and other rocks, instead of consisting of
mere piles of volcanic matter.
I must now say a few words on what are called accidental means,
but which more properly should be called occasional means of
distribution. I shall here confine myself to plants. In botanical
works, this or that plant is often stated to be ill adapted for wide
dissemination; but the greater or less facilities for transport across
the sea may be said to be almost wholly unknown. Until I tried, with
Mr. Berkeley's aid, a few experiments, it was not even known how far
seeds could resist the injurious action of sea-water. To my surprise I
found that out of 87 kinds, 64 germinated after an immersion of 28
days, and a few survived an immersion of 137 days. It deserves
notice that certain orders were far more injured than others: nine
leguminosae were tried, and, with one exception, they resisted the
salt-water badly; seven species of the allied orders,
Hydrophyllaceae and Polemoniacae, were all killed by a month's
immersion. For convenience' sake I chiefly tried small seeds without
the capsule or fruit; and as all of these sank in a few days they
could not have been floated across wide spaces of the sea, whether
or not they were injured by the salt-water. Afterwards I tried some
larger fruits, capsules, &c., and some of these floated for a long
time. It is well known what a difference there is in the buoyancy of
green and seasoned timber; and it occurred to me that floods would
often wash into the sea dried plants or branches with seed-capsules or
fruit attached to them. Hence I was led to dry the stems and
branches of 94 plants with ripe fruit, and to place them on sea-water.
The majority sank rapidly, but some which, whilst green, floated for a
short time, when dried floated much longer; for instance, ripe
hazel-nuts sank immediately, but when dried they floated for 90
days, and afterwards when planted germinated; an asparagus-plant
with ripe berries floated for 23 days, when dried it floated for 85
days, and the seeds afterwards germinated; the ripe seeds of
Helosciadium sank in two days, when dried they floated for above 90
days, and afterwards germinated. Altogether, out of the 94 dried
plants, 18 floated for above 28 days; and some of the 18 floated for a
very much longer period. So that as 64/87 kinds of seeds germinated
after an immersion of 28 days; and as 18/94 distinct species with ripe
fruit (but not all the same species as in the foregoing experiment)
floated, after being dried, for above 28 days, we may conclude, as far
as anything can be inferred from these scanty facts, that the seeds of
14/100 kinds of plants of any country might be floated by sea currents
during 28 days, and would retain their power of germination. In
Johnston's Physical Atlas, the average rate of the several Atlantic
currents is 33 miles per diem (some currents running at the rate of
miles per diem); on this average, the seeds of 14/100 plants belonging
to one country might be floated across 924 miles of sea to another
country, and when stranded, if blown by an inland gale to a favourable
spot, would germinate.
Subsequently to my experiments, M. Martens tried similar ones, but
in a much better manner, for he placed the seeds in a box in the
actual sea, so that they were alternately wet and exposed to the air
like really floating plants. He tried 98 seeds, mostly different
from mine; but he chose many large fruits and likewise seeds from
plants which live near the sea; and this would have favoured both
the average length of their flotation and their resistance to the
injurious action of the salt-water. On the other hand, he did not
previously dry the plants or branches with the fruit; and this, as
we have seen, would have caused some of them to have floated much
longer. The result was that 18/98ths of his seeds of different kinds
floated for 42 days, and were then capable of germination. But I do
not doubt that plants exposed to the waves would float for a less time
than those protected from violent movement as in our experiments.
Therefore it would perhaps be safer to assume that the seeds of
about 10/100 plants of a flora, after having been dried, could be
floated across a space of sea 900 miles in width, and would then
germinate. The fact of the larger fruits often floating longer than
the small, is interesting; as plants with large seeds or fruit
which, as Alph. de Candolle has shown, generally have restricted
ranges, could hardly be transported by any other means.
Seeds may be occasionally transported in another manner. Drift
timber is thrown up on most islands, even on those in the midst of the
widest oceans; and the natives of the coral islands in the Pacific
procure stones for their tools, solely from the roots of drifted
trees, these stones being a valuable royal tax. I find that when
irregularly shaped are embedded in the roots of trees, small parcels
of earth are frequently enclosed in their interstices and behind
them,- so perfectly that not a particle could be washed away during
the longest transport: out of one small portion of earth thus
completely enclosed by the roots of an oak about 50 years old, three
dicotyledonous plants germinated: I am certain of the accuracy of this
observation. Again, I can show that the carcases of birds, when
floating on the sea, sometimes escape being immediately devoured:
and many kinds of seeds in the crops of floating birds long retain
their vitality: peas and vetches, for instance, are killed by even a
few days' immersion in sea-water; but some taken out of the crop of
a pigeon, which had floated on artificial sea-water for 30 days, to my
surprise nearly all germinated.
Living birds can hardly fail to be highly effective agents in the
transportation of seeds. I could give many facts showing how
frequently birds of many kinds are blown by gales to vast distances
across the ocean. We may safely assume that under such circumstances
their rate of flight would often be 35 miles an hour; and some authors
have given a far higher estimate. I have never seen an instance of
nutritious seeds passing through the intestines of a bird, but hard
seeds of fruit pass uninjured through even the digestive organs of a
turkey. In the course of two months, I picked up in my garden 12 kinds
of seeds, out of the excrement of small birds, and these seemed
perfect, and some of them, which were tried, germinated. But the
following fact is more important: the crops of birds do not secrete
gastric juice, and do not, as I know by trial, injure in the least the
germination of seeds; now, after a bird has found and devoured a large
supply of food, it is positively asserted that all the grains do not
pass into the gizzard for twelve or even eighteen hours. A bird in
this interval might easily be blown to the distance of 500 miles,
and hawks are known to look out for tired birds, and the contents of
their torn crops might thus readily get scattered. Some hawks and owls
bolt their prey whole, and, after an interval of from twelve to twenty
hours, disgorge pellets, which, as I know from experiments made in the
Zoological Gardens, include seeds capable of germination. Some seeds
of the oat, wheat, millet, canary, hemp, clover, and beet germinated
after having been from twelve to twenty-one hours in the stomachs of
different birds of prey; and two seeds of beet grew after having
been thus retained for two days and fourteen hours. Fresh-water
fish, I find, eat seeds of many land and water plants; fish are
frequently devoured by birds, and thus the seeds might be
transported from place to place. I forced many kinds of seeds into the
stomachs of dead fish, and then gave their bodies to fishing-eagles,
storks, and pelicans; these birds, after an interval of many hours,
either rejected the seeds in pellets or passed them in their
excrement; and several of these seeds retained the power of
germination. Certain seeds, however, were always killed by this
process.
Locusts are sometimes blown to great distances from the land; I
myself caught one 370 miles from the coast of Africa, and have heard
of others caught at greater distances. The Rev. R. T. Lowe informed
Sir C. Lyell that in November, 1844, swarms of locusts visited the
island of Madeira. They were in countless numbers, as thick as the
flakes of snow in the heaviest snowstorm, and extended upwards as
far as could be seen with a telescope. During two or three days they
slowly careered round and round in an immense ellipse, at least five
or six miles in diameter, and at night alighted on the taller trees,
which were completely coated with them. They then disappeared over the
sea, as suddenly as they had appeared, and have not since visited
the island. Now, in parts of Natal it is believed by some farmers,
though on insufficient evidence, that injurious seeds are introduced
into their grass-land in the dung left by the great flights of locusts
which often visit that country. In consequence of this belief Mr.
Weale sent me in a letter a small packet of the dried pellets, out
of which I extracted under the microscope several seeds, and raised
from them seven grass plants, belonging to two species, of two genera.
Hence a swarm of locusts, such as that which visited Madeira, might
readily be the means of introducing several kinds of plants into an
island lying far from the mainland.
Although the beaks and feet of birds are generally clean, earth
sometimes adheres to them: in one case I removed sixty-one grains, and
in another case twenty-two grains of dry argillaceous earth from the
foot of a partridge, and in the earth there was a pebble as large as
the seed of a vetch. Here is a better case: the leg of a woodcock
was sent to me by a friend, with a little cake of dry earth attached
to the shank, weighing only nine grains; and this contained a seed
of the toad-rush (Juncus bufonius) which germinated and flowered.
Mr. Swaysland, of Brighton, who during the last forty years has paid
close attention to our migratory birds, informs me that he has often
shot wagtails (Motacillae), wheat-ears, and whinchats (Saxicolae),
on their first arrival on our shores, before they had alighted; and he
has several times noticed little cakes of earth attached to their
feet. Many facts could be given showing how generally soil is
charged with seeds. For instance, Prof. Newton sent me the leg of a
red-legged partridge (Caccabis rufa) which had been wounded and
could not fly, with a ball of hard earth adhering to it, and
weighing six and a half ounces. The earth had been kept for three
years, but when broken, watered and placed under a bell glass, no less
than 82 plants sprung from it: these consisted of 12 monocotyledons,
including the common oat, and at least one kind of grass, and of 70
dicotyledons, which consisted, judging from the young leaves, of at
least three distinct species. With such facts before us, can we
doubt that the many birds which are annually blown by gales across
great spaces of ocean, and which annually migrate- for instance, the
millions of quails across the Mediterranean- must occasionally
transport a few seeds embedded in dirt adhering to their feet or
beaks? But I shall have to recur to this subject.
As icebergs are known to be sometimes loaded with earth and
stones, and have even carried brushwood, bones, and the nest of a
land-bird, it can hardly be doubted that they must occasionally, as
suggested by Lyell, have transported seeds from one part to another of
the arctic and antarctic regions; and during the Glacial period from
one part of the now temperate regions to another. In the Azores,
from the large number of plants common to Europe, in comparison with
the species on the other islands of the Atlantic, which stand nearer
to the mainland, and (as remarked by Mr. H. C. Watson) from their
somewhat northern character in comparison with the latitude, I
suspected that these islands had been partly stocked by ice-borne
seeds, during the Glacial epoch. At my request Sir C. Lyell wrote to
M. Hartung to inquire whether he had observed erratic boulders on
these islands, and he answered that he had found large fragments of
granite and other rocks, which do not occur in the archipelago.
Hence we may safely infer that icebergs formerly landed their rocky
burthens on the shores of these mid-ocean islands and it is at least
possible that they may have brought thither some few seeds of
northern plants.
Considering that these several means of transport, and that other
means, which without doubt remain to be discovered, have been in
action year after year for tens of thousands of years, it would, I
think, be a marvellous fact if many plants had not thus become
widely transported. These means of transport are sometimes called
accidental, but this is not strictly correct: the currents of the
sea are not accidental, nor is the direction of prevalent gales of
wind. It should be observed that scarcely any means of transport would
carry seeds for very great distances: for seeds do not retain their
vitality when exposed for a great length of time to the action of
sea-water; nor could they be long carried in the crops or intestines
of birds. These means, however, would suffice for occasional transport
across tracts of sea some hundred miles in breadth, or from island
to island, or from a continent to a neighbouring island, but not
from one distant continent to another. The floras of distant
continents would not by such means become mingled; but would remain as
distinct as they now are. The currents, from their course, would never
bring seeds from North America to Britain, though they might and do
bring seeds from the West Indies to our western shores, where, if
not killed by their very long immersion in salt water, they could
not endure our climate. Almost every year, one or two land-birds are
blown across the whole Atlantic Ocean, from North America to the
western shores of Ireland and England; but seeds could be
transported by these rare wanderers only by one means, namely, by
dirt adhering to their feet or beaks, which is in itself a rare
accident. Even in this case, how small would be the chance of a seed
falling on favourable soil, and coming to maturity! But it would be
a great error to argue that because a well-stocked island, like
Great Britain, has not, as far as is known (and it would be very
difficult to prove this), received within the last few centuries,
through occasional means of transport, immigrants from Europe or any
other continent, that a poorly-stocked island, though standing more
remote from the mainland, would not receive colonists by similar
means. Out of a hundred kinds of seeds or animals transported to an
island, even if far less well-stocked than Britain, perhaps not more
than one would be so well fitted to its new home, as to become
naturalised. But this is no valid argument against what would be
effected by occasional means of transport, during the long lapse of
geological time, whilst the island was being upheaved, and before it
had become fully stocked with inhabitants. On almost bare land, with
few or no destructive insects or birds living there, nearly every seed
which chanced to arrive, if fitted for the climate, would germinate
and survive.
Dispersal during the Glacial Period
The identity of many plants and animals, on mountain-summits,
separated from each other by hundreds of miles of lowlands, where
Alpine species could not possibly exist, is one of the most striking
cases known of the same species living at distant points without the
apparent possibility of their having migrated from one point to the
other. It is indeed a remarkable fact to see so many plants of the
same species living on the snowy regions of the Alps or Pyrenees,
and in the extreme northern parts of Europe; but it is far more
remarkable, that the plants on the White Mountains, in the United
States of America, are all the same with those of Labrador, and
nearly all the same, as we hear from Asa Gray, with those on the
loftiest mountains of Europe. Even as long ago as 1747, such facts led
Gmelin to conclude that the same species must have been
independently created at many distinct points; and we might have
remained in this same belief, had not Agassiz and others called
vivid attention to the Glacial period, which, as we shall
immediately see, affords a simple explanation of these facts. We
have evidence of almost every conceivable kind, organic and inorganic,
that, within a very recent geological period, central Europe and North
America suffered under an arctic climate. The ruins of a house burnt
by fire do not tell their tale more plainly than do the mountains of
Scotland and Wales, with their scored flanks, polished surfaces, and
perched boulders, of the icy streams with which their valleys were
lately filled. So greatly has the climate of Europe changed, that in
northern Italy, gigantic moraines, left by old glaciers, are now
clothed by the vine and maize. Throughout a large part of the United
States, erratic boulders and scored rocks plainly reveal a former cold
period.
The former influence of the glacial climate on the distribution of
the inhabitants of Europe, as explained by Edward Forbes, is
substantially as follows. But we shall follow the changes more
readily, by supposing a new glacial period slowly to come on, and then
pass away, as formerly occurred. As the cold came on, and as each more
southern zone became fitted for the inhabitants of the north, these
would take the places of the former inhabitants of the temperate
regions. The latter, at the same time, would travel further and
further southward, unless they were stopped by barriers, in which case
they would perish. The mountains would become covered with snow and
ice, and their former Alpine inhabitants would descend to the
plains. By the time that the cold had reached its maximum, we should
have an arctic fauna and flora, covering the central parts of
Europe, as far south as the Alps and Pyrenees, and even stretching
into Spain. The now temperate regions of the United States would
likewise be covered by arctic plants and animals and these would be
nearly the same with those of Europe; for the present circumpolar
inhabitants, which we suppose to have everywhere travelled
southward, are remarkably uniform round the world.
As the warmth returned, the arctic forms would retreat northward,
closely followed up in their retreat by the productions of the more
temperate regions. And as the snow melted from the bases of the
mountains, the arctic forms would seize on the cleared and thawed
ground, always ascending, as the warmth increased and the snow still
further disappeared, higher and higher, whilst their brethren were
pursuing their northern journey. Hence, when the warmth had fully
returned, the same species, which had lately lived together on the
European and North American lowlands, would again be found in the
arctic regions of the Old and New Worlds, and on many isolated
mountain-summits far distant from each other.
Thus we can understand the identity of many plants at points so
immensely remote as the mountains of the United States and those of
Europe. We can thus also understand the fact that the Alpine plants of
each mountain range are more especially related to the arctic forms
living due north or nearly due north of them: for the first
migration when the cold came on, and the re-migration on the returning
warmth, would generally have been due south and north. The Alpine
plants, for example, of Scotland, as remarked by Mr. H. C. Watson,
and those of the Pyrenees, as remarked by Ramond, are more
especially allied to the plants of northern Scandinavia; those of
the United States to Labrador; those of the mountains of Siberia to
the arctic regions of that country. These views, grounded as they
are on the perfectly well-ascertained occurrence of a former Glacial
period, seem to me to explain in so satisfactory a manner the
present distribution of the Alpine and arctic productions of Europe
and America, that when in other regions we find the same species on
distant mountain-summits, we may almost conclude, without other
evidence, that a colder climate formerly permitted their migration
across the intervening lowlands, now become too warm for their
existence.
As the arctic forms moved first southward and afterwards backwards
to the north, in unison with the changing climate, they will not
have been exposed during their long migration to any great diversity
of temperature; and as they all migrated in a body together, their
mutual relations will not have been much disturbed. Hence, in
accordance with the principles inculcated in this volume, these
forms will not have been liable to much modification. But with the
Alpine productions, left isolated from the moment of the returning
warmth, first at the bases and ultimately on the summits of the
mountains, the case will have been somewhat different; for it is not
likely that all the same arctic species will have been left on
mountain ranges far distant from each other, and have survived there
ever since; they will also in all probability, have become mingled
with ancient Alpine species, which must have existed on the
mountains before the commencement of the Glacial epoch, and which
during the coldest period will have been temporarily driven down to
the plains; they will, also, have been subsequently exposed to
somewhat different climatal influences. Their mutual relations will
thus have been in some degree disturbed; consequently they will have
been liable to modification; and they have been modified; for if we
compare the present Alpine plants and animals of the several great
European mountain ranges one with another, though many of the
species remain identically the same, some exist as varieties, some
as doubtful forms or sub-species, and some as distinct yet closely
allied species representing each other on the several ranges.
In the foregoing illustration I have assumed that at the
commencement of our imaginary Glacial period, the arctic productions
were as uniform round the polar regions as they are at the present
day. But it is also necessary to assume that many sub-arctic and
some few temperate forms were the same round the world, for some of
the species which now exist on the lower mountain-slopes and on the
plains of North America and Europe are the same; and it may be asked
how I account for this degree of uniformity in the sub-arctic and
temperate forms round the world, at the commencement of the real
Glacial period. At the present day, the sub-arctic and northern
temperate productions of the Old and New Worlds are separated from
each other by the whole Atlantic Ocean and by the northern part of the
Pacific. During the Glacial period, when the inhabitants of the Old
and New Worlds lived farther southward than they do at present, they
must have been still more completely separated from each other by
wider spaces of ocean; so that it may well be asked how the same
species could then or previously have entered the two continents.
The explanation, I believe, lies in the nature of the climate before
the commencement of the Glacial period. At this, the newer Pliocene
period, the majority of the inhabitants of the world were specifically
the same as now, and we have good reason to believe that the climate
was warmer than at the present day. Hence we may suppose that the
organisms which now live under latitude 60, lived during the
Pliocene period farther north under the Polar Circle, in latitude
66-67; and that the present arctic productions then lived on the
broken land still nearer to the pole. Now, if we looked at a
terrestrial globe, we see under the Polar Circle that there is
almost continuous land from western Europe, through Siberia, to
eastern America. And this continuity of the circumpolar land, with the
consequent freedom under a more favourable climate for intermigration,
will account for the supposed uniformity of the sub-arctic and
temperate productions of the Old and New Worlds, at a period
anterior to the Glacial epoch.
Believing, from reasons before alluded to, that our continents
have long remained in nearly the same relative position, though
subjected to great oscillations of level, I am strongly inclined to
extend the above view, and to infer that during some still earlier and
still warmer period, such as the older Pliocene period, a large number
of the same plants and animals inhabited the almost continuous
circumpolar land; and that these plants and animals, both in the Old
and New Worlds, began slowly to migrate southwards as the climate
became less warm, long before the commencement of the Glacial
period. We now see, as I believe, their descendants, mostly in a
modified condition, in the central parts of Europe and the United
States. On this view we can understand the relationship with very
little identity, between the productions of North America and Europe,-
a relationship which is highly remarkable, considering the distance of
the two areas, and their separation by the whole Atlantic Ocean. We
can further understand the singular fact remarked on by several
observers that the productions of Europe and America during the
later tertiary stages were more closely related to each other than
they are at the present time; for during these warmer periods the
northern parts of the Old and New Worlds will have been almost
continuously united by land, serving as a bridge, since rendered
impassable by cold, for the intermigration of their inhabitants.
During the slowly decreasing warmth of the Pliocene period, as
soon as the species in common, which inhabited the New and Old Worlds,
migrated south of the Polar Circle, they will have been completely cut
off from each other. This separation, as far as the more temperate
productions are concerned, must have taken place long ages ago. As the
plants and animals migrated southwards, they will have become
mingled in the one great region with the native American
productions, and would have had to compete with them; and in the
other great region, with those of the Old World. Consequently we
have here everything favourable for much modification,- for far more
modification than with the Alpine productions, left isolated, within a
much more recent period, on the several mountain-ranges and on the
arctic lands of Europe and N. America. Hence it has come, that when we
compare the now living productions of the temperate regions of the New
and Old Worlds, we find very few identical species (though Asa Gray
has lately shown that more plants are identical than was formerly
supposed), but we find in every great class many forms, which some
naturalists rank as geographical races, and others as distinct
species; and a host of closely allied or representative forms which
are ranked by all naturalists as specifically distinct.
As on the land, so in the waters of the sea, a slow southern
migration of a marine fauna, which, during the Pliocene or even a
somewhat earlier period, was nearly uniform along the continuous
shores of the Polar Circle, will account, on the theory of
modification, for many closely allied forms now living in marine areas
completely sundered. Thus, I think, we can understand the presence
of some closely allied, still existing and extinct tertiary forms,
on the eastern and western shores of temperate North America; and
the still more striking fact of many closely allied crustaceans (as
described in Dana's admirable work), some fish and other marine
animals, inhabiting the Mediterranean and the seas of Japan,- these
two areas being now completely separated by the breadth of a whole
continent and by wide spaces of ocean.
These cases of close relationship in species either now or
formerly inhabiting the seas on the eastern and western shores of
North America, the Mediterranean and Japan, and the temperate lands of
North America and Europe, are inexplicable on the theory of
creation. We cannot maintain that such species have been created
alike, in correspondence with the nearly similar physical conditions
of the areas; for if we compare, for instance, certain parts of
South America with parts of South Africa or Australia, we see
countries closely similar in all their physical conditions, with their
inhabitants utterly dissimilar.
Alternate Glacial Periods in the North and South
But we must return to our more immediate subject. I am convinced
that Forbes's view may be largely extended. In Europe we meet with the
plainest evidence of the Glacial period, from the western shores of
Britain to the Oural range, and southward to the Pyrenees. We may
infer from the frozen mammals and nature of the mountain vegetation,
that Siberia was similarly affected. In the Lebanon, according to
Dr. Hooker, perpetual snow formerly covered the central axis, and
fed glaciers which rolled 400 feet down the valleys. The same observer
has recently found great moraines at a low level on the Atlas range in
N. Africa. Along the Himalaya, at points 900 miles apart, glaciers
have left the marks of their former low descent; and in Sikkim, Dr.
Hooker saw maize growing on ancient and gigantic moraines. Southward
of the Asiatic continent, on the opposite side of the equator, we
know, from the excellent researches of Dr. J. Haast and Dr. Hector,
that in New Zealand immense glaciers formerly descended to a low
level; and the same plants found by Dr. Hooker on widely separated
mountains in this island tell the same story of a former cold
period. From facts communicated to me by the Rev. W. B. Clarke, it
appears also that there are traces of former glacial action on the
mountains of the south-eastern corner of Australia.
Looking to America; in the northern half, ice-borne fragments of
rock have been observed on the eastern side of the continent, as far
south as lat. 36-37, and on the shores of the Pacific, where the
climate is now so different, as far south as lat. 46. Erratic boulders
have, also, been noticed on the Rocky Mountains. In the Cordillera
of South America, nearly under the equator, glaciers once extended far
below their present level. In Central Chile I examined a vast mound of
detritus with great boulders, crossing the Portillo valley, which
there can hardly be a doubt once formed a huge moraine; and Mr. D.
Forbes informs me that he found in various parts of the Cordillera,
from lat. 13 deg. to 30 deg. S., at about the height of 19,000 feet,
deeply furrowed rocks, resembling those with which he was familiar
in Norway, and likewise great masses of detritus, including grooved
pebbles. Along this whole space of the Cordillera true glaciers do not
exist even at much more considerable heights. Farther south on both
sides of the continent, from lat. 41 deg. to the southernmost
extremity, we have the clearest evidence of former glacial action,
in numerous immense boulders transported far from their parent source.
From these several facts, namely from the glacial action having
extended all round the northern and southern hemispheres- from the
period having been in a geological sense recent in both hemispheres-
from its having lasted in both during a great length of time, as may
be inferred from the amount of work affected- and lastly from glaciers
having recently descended to a low level along the whole line of the
Cordillera, it at one time appeared to me that we could not avoid
the conclusion that the temperature of the whole world had been
simultaneously lowered during the Glacial period. But now Mr. Croll,
in a series of admirable memoirs, has attempted to show that a glacial
condition of climate is the result of various physical causes, brought
into operation by an increase in the eccentricity of the earth's
orbit. All these causes tend towards the same end; but the most
powerful appears to be the indirect influence of the eccentricity of
the orbit upon oceanic currents. According to Mr. Croll, cold
periods regularly occur every ten or fifteen thousand years; and these
at long intervals are extremely severe, owing to certain
contingencies, of which the most important, as Sir C. Lyell has shown,
is the relative position of the land and water. Mr. Croll believes
that the last great Glacial period occurred about 240,000 years ago,
and endured with slight alterations of climate for about 160,000
years. With respect to more ancient Glacial periods, several
geologists are convinced from direct evidence that such occurred
during the Miocene and Eocene formations, not to mention still more
ancient formations. But the most important result for us, arrived at
by Mr. Croll, is that whenever the northern hemisphere passes
through a cold period the temperature of the southern hemisphere is
actually raised, with the winters rendered much milder, chiefly
through changes in the direction of the ocean currents. So
conversely it will be with the northern hemisphere, whilst the
southern passes through a Glacial period. This conclusion throws so
much light on geographical distribution that I am strongly inclined to
trust in it; but I will first give the facts, which demand an
explanation.
In South America, Dr. Hooker has shown that besides many closely
allied species, between forty and fifty of the flowering plants of
Tierra del Fuego, forming no inconsiderable part of its scanty
flora, are common to North America and Europe, enormously remote as
these areas in opposite hemispheres are from each other. On the
lofty mountains of equatorial America a host of peculiar species
belonging to European genera occur. On the Organ mountains of
Brazil, some few temperate European, some Antarctic, and some Andean
genera were found by Gardner, which do not exist in the low
intervening hot countries. On the Silla of Caraccas, the illustrious
Humboldt long ago found species belonging to genera characteristic
of the Cordillera.
In Africa, several forms characteristic of Europe and some few
representatives of the flora of the Cape of Good Hope occur in the
mountains of Abyssinia. At the Cape of Good Hope a very few European
species, believed not to have been introduced by man, and on the
mountains several representative European forms are found, which
have not been discovered in the intertropical parts of Africa. Dr.
Hooker has also lately shown that several of the plants living on
the upper parts of the lofty island of Fernando Po and on the
neighbouring Cameroon mountains, in the Gulf of Guinea, are closely
related to those on the mountains of Abyssinia, and likewise to
those of temperate Europe. It now also appears, as I hear from Dr.
Hooker, that some of these same temperate plants have been
discovered by the Rev. R. T. Lowe on the mountains of the Cape Verde
Islands. This extension of the same temperate forms, almost under
the equator, across the whole continent of Africa and to the mountains
of the Cape Verde Archipelago, is one of the most astonishing facts
ever recorded in the distribution of plants.
On the Himalaya, and on the isolated mountain-ranges of the
peninsula of India, on the heights of Ceylon, and on the volcanic
cones of Java, many plants occur, either identically the same or
representing each other, and at the same time representing plants of
Europe, not found in the intervening hot lowlands. A list of the
genera of plants collected on the loftier peaks of Java, raises a
picture of a collection made on a hillock in Europe! Still more
striking is the fact that peculiar Australian forms are represented by
certain plants growing on the summits of the mountains of Borneo. Some
of these Australian forms, as I hear from Dr. Hooker, extend along the
heights of the peninsula of Malacca, and are thinly scattered on the
one hand over India, and on the other hand as far north as Japan.
On the southern mountains of Australia, Dr. F. Muller has discovered
several European species; other species, not introduced by man,
occur on the lowlands; and a long list can be given, as I am
informed by Dr. Hooker, of European genera, found in Australia, but
not in the intermediate torrid regions. In the admirable
Introduction to the Flora of New Zealand, by Dr. Hooker, analogous and
striking facts are given in regard to the plants of that large island.
Hence we see that certain plants growing on the more lofty mountains
of the tropics in all parts of the world, and on the temperate
plains of the north and south, are either the same species or
varieties of the same species. It should, however, be observed that
these plants are not strictly arctic forms; for, as Mr. H. C. Watson
has remarked, "in receding from polar towards equatorial latitudes,
the Alpine or mountain floras really become less and less Arctic."
Besides these identical and closely allied forms, many species
inhabiting the same widely sundered areas, belong to genera not now
found in the intermediate tropical lowlands.
These brief remarks apply to plants alone; but some few analogous
facts could be given in regard to terrestrial animals. In marine
productions, similar cases likewise occur; as an example, I may
quote a statement by the highest authority, Prof. Dana, that "It is
certainly a wonderful fact that New Zealand should have a closer
resemblance in its Crustacea to Great Britain, its antipode, than to
any other part of the world." Sir J. Richardson, also, speaks of the
reappearance on the shores of New Zealand, Tasmania, &c., of
northern forms of fish. Dr. Hooker informs me that twenty-five species
of Algae are common to New Zealand and to Europe, but have not been
found in the intermediate tropical seas.
From the foregoing facts, namely, the presence of temperate forms on
the highlands across the whole of equatorial Africa, and along the
Peninsula of India, to Ceylon and the Malay Archipelago, and in a less
well-marked manner across the wide expanse of tropical South
America, it appears almost certain that at some former period, no
doubt during the most severe part of a Glacial period, the lowlands of
these great continents were everywhere tenanted under the equator by
considerable number of temperate forms. At this period the
equatorial climate at the level of the sea was probably about the same
with that now experienced at the height of from five to six thousand
feet under the same latitude, or perhaps even rather cooler. During
this, the coldest period, the lowlands under the equator must have
been clothed with a mingled tropical and temperate vegetation, like
that described by Hooker as growing luxuriantly at the height of
from four to five thousand feet on the lower slopes of the Himalaya,
but with perhaps a still greater preponderance of temperate forms.
So again in the mountainous island of Fernando Po, in the Gulf of
Guinea, Mr. Mann found temperate European forms beginning to appear at
the height of about five thousand feet. On the mountains of Panama, at
the height of only two thousand feet, Dr. Seemann found the vegetation
like that of Mexico, "with forms of the torrid zone harmoniously
blended with those of the temperate."
Now let us see whether Mr. Croll's conclusion that when the northern
hemisphere suffered from the extreme cold of the great Glacial period,
the southern hemisphere was actually warmer, throws any clear light on
the present apparently inexplicable distribution of various
organisms in the temperate parts of both hemispheres, and on the
mountains of the tropics. The Glacial period, as measured by years,
must have been very long; and when we remember over what vast spaces
some naturalised plants and animals have spread within a few
centuries, this period will have been ample for any amount of
migration. As the cold became more and more intense, we know that
arctic forms invaded the temperate regions; and, from the facts just
given, there can hardly be a doubt that some of the more vigorous,
dominant, and widest-spreading temperate forms invaded the
equatorial lowlands. The inhabitants of these hot lowlands would at
the same time have migrated to the tropical and subtropical regions of
the south, for the southern hemisphere was at this period warmer. On
the decline of the Glacial period, as both hemispheres gradually
recovered their former temperatures, the northern temperate forms
living on the lowlands under the equator, would have been driven to
their former homes or have been destroyed, being replaced by the
equatorial forms returning from the south. Some, however, of the
northern temperate forms would almost certainly have ascended any
adjoining high land, where, if sufficiently lofty, they would have
long survived like the arctic forms on the mountains of Europe. They
might have survived, even if the climate was not perfectly fitted
for them, for the change of temperature must have been very slow,
and plants undoubtedly possess a certain capacity for acclimatisation,
as shown by their transmitting to their offspring different
constitutional powers of resisting heat and cold.
In the regular course of events the southern hemisphere would in
its turn be subjected to a severe Glacial period, with the northern
hemisphere rendered warmer; and then the southern temperate forms
would invade the equatorial lowlands. The northern forms which had
before been left on the mountains would now descend and mingle with
the southern forms. These latter, when the warmth returned, would
return to their former homes, leaving some few species on the
mountains, and carrying southward with them some of the northern
temperate forms which had descended from their mountain fastnesses.
Thus, we should have some few species identically the same in the
northern and southern temperate zones and on the mountains of the
intermediate tropical regions. But the species left during a long time
on these mountains, or in opposite hemispheres, would have to
compete with many new forms and would be exposed to somewhat different
physical conditions; hence they would be eminently liable to
modification, and would generally now exist as varieties or as
representative species; and this is the case. We must, also, bear in
mind the occurrence in both hemispheres of former Glacial periods; for
these will account, in accordance with the same principles, for the
many quite distinct species inhabiting the same widely separated
areas, and belonging to genera not now found in the intermediate
torrid zones.
It is a remarkable fact strongly insisted on by Hooker in regard
to America, and by Alph. de Candolle in regard to Australia, that many
more identical or slightly modified species have migrated from the
north to the south, than in a reversed direction. We see, however, a
few southern forms on the mountains of Borneo and Abyssinia. I suspect
that this preponderant migration from the north to the south is due to
the greater extent of land in the north, and to the northern forms
having existed in their own homes in greater numbers, and having
consequently been advanced through natural selection and competition
to a higher stage of perfection, or dominating power, than the
southern forms. And thus, when the two sets became commingled in the
equatorial regions, during the alternations to the Glacial periods,
the northern forms were the more powerful and were able to hold
their places on the mountains, and afterwards to migrate southward
with the southern forms; but not so the southern in regard to the
northern forms. In the same manner at the present day, we see that
very many European productions cover the ground in La Plata, New
Zealand, and to a lesser degree in Australia, and have beaten the
natives; whereas extremely few southern forms have become
naturalised in any part of the northern hemisphere, though hides,
wool, and other objects likely to carry seeds have been largely
imported into Europe during the last two or three centuries from La
Plata and during the last forty or fifty years from Australia. The
Neilgherrie mountains in India, however, offer a partial exception;
for here, as I hear from Dr. Hooker, Australian forms are rapidly
sowing themselves and becoming naturalised. Before the last great
Glacial period, no doubt the intertropical mountains were stocked with
endemic Alpine forms; but these have almost everywhere yielded to
the more dominant forms generated in the larger areas and more
efficient workshops of the north. In many islands the native
productions are nearly equalled, or even outnumbered, by those which
have become naturalised; and this is the first stage towards their
extinction. Mountains are islands on the land, and their inhabitants
have yielded to those produced within the larger areas of the north,
just in the same way as the inhabitants of real islands have
everywhere yielded and are still yielding to continental forms
naturalised through man's agency.
The same principles apply to the distribution of terrestrial animals
and of marine productions, in the northern and southern temperate
zones, and on the intertropical mountains. When, during the height
of the Glacial period, the ocean-currents were widely different to
what they now are, some of the inhabitants of the temperate seas might
have reached the equator; of these a few would perhaps at once be able
to migrate southward, by keeping to the cooler currents, whilst
others might remain and survive in the colder depths until the
southern hemisphere was in its turn subjected to a glacial climate and
permitted their further progress; in nearly the same manner as,
according to Forbes, isolated spaces inhabited by arctic productions
exist to the present day in the deeper parts of the northern temperate
seas.
I am far from supposing that all the difficulties in regard to the
distribution and affinities of the identical and allied species, which
now live so widely separated in the north and south, and sometimes
on the intermediate mountain-ranges, are removed on the views above
given. The exact lines of migration cannot be indicated. We cannot say
why certain species and not others have migrated; why certain
species have been modified and have given rise to new forms, whilst
others have remained unaltered. We cannot hope to explain such
facts, until we can say why one species and not another becomes
naturalised by man's agency in a foreign land; why one species
ranges twice or thrice as far, and is twice or thrice as common, as
another species within their own homes.
Various special difficulties also remain to be solved; for instance,
the occurrence, as shown by Dr. Hooker, of the same plants at points
so enormously remote as Kerguelen Land, New Zealand, and Fuegia; but
icebergs, as suggested by Lyell, may have been concerned in their
dispersal. The existence at these and other distant points of the
southern hemisphere, of species, which, though distinct, belong to
genera exclusively confined to the south, is a more remarkable case.
Some of these species are so distinct, that we cannot suppose that
there has been time since the commencement of the last Glacial
period for their migration and subsequent modification to the
necessary degree. The facts seem to indicate that distinct species
belonging to the same genera have migrated in radiating lines from a
common centre; and I am inclined to look in the southern, as in the
northern hemisphere, to a former and warmer period, before the
commencement of the last Glacial period, when the Antarctic lands, now
covered with ice, supported a highly peculiar and isolated flora. It
may be suspected that before this flora was exterminated during the
last Glacial epoch, a few forms had been already widely dispersed to
various points of the southern hemisphere by occasional means of
transport, and by the aid as halting-places, of now sunken islands.
Thus the southern shores of America, Australia, and New Zealand may
have become slightly tinted by the same peculiar forms of life.
Sir C. Lyell in a striking passage has speculated, in language
almost identical with mine, on the effects of great alterations of
climate throughout the world on geographical distribution. And we have
now seen that Mr. Croll's conclusion that successive Glacial periods
in the one hemisphere coincide with warmer periods in the opposite
hemisphere, together with the admission of the slow modification of
species, explains a multitude of facts in the distribution of the same
and of the allied forms of life in all parts of the globe. The
living waters have flowed during one period from the north and
during another from the south, and in both cases have reached the
equator; but the stream of life has flowed with greater force from the
north than in the opposite direction, and has consequently more freely
inundated the south. As the tide leaves its drift in horizontal lines,
rising higher on the shores where the tide rises highest, so have
the living waters left their living drift on our mountain summits,
in a line gently rising from the arctic lowlands to a great altitude
under the equator. The various beings thus left stranded may be
compared with savage races of man, driven up and surviving in the
mountain fastnesses of almost every land, which serves as a record,
full of interest to us, of the former inhabitants of the surrounding
lowlands.
To flip through the pages of my BOS faster...
|