
In Zhong, N. et al. (eds). 2003. Foundations of Intelligent Systems – Proc. of the 14th Int. Symposium on Methodologies
for Intelligent Systems ISMIS’03, 613-617.
Copyright © 2003 Springer-Verlag

A Feature Analysis Framework for Evaluating
Multi-agent System Development Methodologies

Quynh-Nhu Numi Tran1, Graham Low1, Mary-Anne Williams2

1 School of Information Systems, Technology and Management
The University of New South Wales

New South Wales, Australia
{numitran, g.low}@unsw.edu.au

2 Innovation and Technology Research Laboratory
Faculty of Information Technology, University of Technology Sydney

New South Wales, Australia
Mary-Anne@it.uts.edu.au

Abstract. This paper proposes a comprehensive and multi-dimensional feature
analysis framework for evaluating and comparing methodologies for develop-
ing multi-agent systems (MAS). Developed from a synthesis of various existing
evaluation frameworks, the novelty of our framework lies in the high degree of
its completeness and the relevance of its evaluation criteria. The paper also pre-
sents a pioneering effort in identifying the standard steps and concepts to be
supported by a MAS-development process and models.

1 Introduction

Today, with the availability of numerous methodologies for analyzing and designing
multi-agent systems (MAS), MAS-developers have to deal with a difficulty that has
plagued object-oriented (OO) developers, i.e. comparing the available MAS-
development methodologies, thereafter deciding on the most appropriate methodology
to use in a specific application. Unfortunately, the numerous feature analysis frame-
works for evaluating conventional system development methodologies do not assess
the agent-oriented aspects of MAS development. On the other hand, due to the recent
emergence of MAS and their inherent complexity, few frameworks exist for evaluat-
ing MAS-development methodologies ([5], [6], [7], [8]). These frameworks mainly
examine MAS-specific characteristics without adequately considering the system en-
gineering dimensions. We fill the current void by proposing a comprehensive, multi-
dimensional framework that evaluates a MAS-development methodology from both
the dimensions of system engineering and those specific to MAS engineering.

Instead of developing the framework from scratch, we built on the established
work in the literature by, firstly, selecting the relevant evaluation criteria from the
various existing feature analysis frameworks, thereafter synthesizing these criteria
into a new comprehensive framework. Our pool of resources consists of a) the most
outstanding and well-documented evaluation frameworks for conventional system de-
velopment methodologies including OO methodologies – namely [1], [2], [3] and [4],

and b) all the identified frameworks for MAS-methodology evaluation – namely [5],
[6], [7] and [8]. The former provides a well-established account of the generic system
engineering features to be subject to methodological evaluation, while the latter pres-
ents various agent-oriented and MAS-specific aspects for assessment.

To promote the relevance of our framework, we adopted the evaluation criteria that
are representative, case-generic, and centered on the capabilities and usefulness of a
methodology. We also added several evaluation criteria that are not yet accounted for
in the existing evaluation frameworks, e.g. a methodology’s approach towards MAS
development, support for mobile agents, and support for ontology.

2 Specification of the New Feature Analysis Framework

Our evaluation framework is comprised of four components (Table 1):
� Process Related Criteria: evaluating a methodology’s support for the MAS-

development process
� Technique Related Criteria: assessing the methodology’s techniques to develop

MAS
� Model Related Criteria: examining the capabilities of the methodology’s models
� Supportive Feature Criteria: evaluating a variety of high-level methodological ca-

pabilities
This structure highlights the completeness of our framework, as it targets at all three
major components of a system development methodology – process, models, and
techniques – as defined by OPEN [9]. Full details of how the framework was speci-
fied are not presented due to space constraints.

Table 1. Feature analysis framework for evaluating MAS-development methodologies

Process Related Criteria
1. Development lifecycle: What development lifecycle best describes the methodology (e.g. waterfall)?
2. Coverage of the lifecycle: What phases of the lifecycle are covered by the methodology (e.g. analy-

sis, design, and implementation)?
3. Development approach: What development approach is supported (i.e. top-down or bottom-up)?
4. Application domain: Is the methodology applicable to a specific or multiple application domains?
5. Scope of effort: What size of MAS is the methodology suited for (i.e. small, medium, or large)?
6. Agent nature: Does the methodology support only homogeneous agents, or heterogeneous agents?
7. Support for verification and validation: Does the methodology contain rules to allow for the verifi-

cation and validation of correctness of developed models and specifications?
8. Steps in the development process: What development steps are supported by the methodology?
9. Notational components: What models and diagrams are generated from each process step?
10. Comments on the overall strengths/weaknesses of each step: This criterion allows the evaluator to

record any comments on a process step that cannot be recorded anywhere else.
11. Ease of understanding of the process steps: Are the process steps easy to understand?
12. Usability of the methodology: Are the process steps easy to follow?
13. Definition of inputs and outputs: Are inputs and outputs to each process step defined, with possible

examples?
14. Refinability: Do the process steps provide a clear path for refining the methodology’s models through

gradual stages to reach an implementation, or at least for clearly connecting the implementation level
to the design specification?

15. Approach towards MAS development: Is the methodology
a. OO-based or knowledge-engineering based?

b. Role-oriented or non-role-oriented regarding its approach towards agent identification?
c. Goal-oriented, behavior-oriented, or organization-oriented in the identification of roles (if a role-

oriented approach in b. applies)?
d. Architecture-independent or architecture-dependent?

Technique Related Criteria
1. Availability of techniques and heuristics:

a. What are the techniques to perform each process step?
b. What are the techniques to produce each notational component (i.e. modeling techniques)?

2. Comments on the strengths/weaknesses of the techniques: This criterion allows the evaluator to re-
cord any comments on the techniques to perform each step or to produce each model.

3. Ease of understanding of techniques: Are the techniques easy to understand?
4. Usability of techniques: Are the techniques easy to follow?
5. Provision of examples and heuristics: Are examples and heuristics of the techniques provided?
Model Related Criteria
1. Concepts: What concepts are the methodology’s models capable of expressing?
2. Expressiveness: How well can the models express these concepts and relationships between con-

cepts? (e.g. are the models capable of capturing each concept at a great level of detail, or from differ-
ent angles?)

3. Completeness: Are all necessary agent-oriented concepts that describe the target MAS captured?
4. Formalization/Preciseness of models:

a. Are notation (syntax) and semantics of the models clearly defined?
b. Are examples of the models presented?

5. Model derivation: Does there exist explicit process/logic and guidelines for transforming models into
other models, or partially creating a model from information present in another?

6. Consistency:
a. Are there rules and guidelines to ensure consistency between levels of abstractions within each

model (i.e. internal consistency), and between different models?
b. Are representations expressed in a manner that allows for consistency checking between them?

7. Complexity:
a. Is there a manageable number of concepts expressed in a single model/diagram?
b. Is notation semantically and syntactically simple across models?

8. Ease of understanding of models: Are the models easy to understand?
9. Modularity: Does the methodology and its models provide support for modularity of agents?
10. Abstraction: Does the methodology allow for producing models at various levels of detail and ab-

straction?
11. Autonomy: Can the models support and represent the autonomous feature of agents?
12. Adaptability: Can the models support and represent the adaptability feature of agents (i.e. the ability

to learn and improve with experience)?
13. Cooperative behavior: Can the models support and represent the cooperative behavior of agents (i.e.

the ability to work together with other agents to achieve a common goal)?
14. Inferential capability: Can the models support and represent the inferential capability feature of

agents (i.e. the ability to act on abstract task specifications)?
15. Communication ability: Can the models support and represent “knowledge-level” communication

ability (i.e. the ability to communicate with other agents using language resembling human-like
speech acts)?

16. Personality: Can the models support and represent the personality of agents (i.e. the ability to mani-
fest attributes of a “believable” human character)?

17. Reactivity: Can the models support and represent reactivity of agents (i.e. the ability to selectively
sense and act)?

18. Temporal continuity: Can the models support and represent temporal continuity of agents (i.e. per-
sistence of identity and state over long periods of time)?

19. Deliberative behavior: Can the models support and represent deliberative behavior of agents (i.e. the
ability to decide in a deliberation, or proactiveness)?

20. Concurrency: Does the methodology allow for producing models to capture concurrency (e.g. repre-
sentation of concurrent processes and synchronization of concurrent processes)?

21. Human Computer Interaction: Does the methodology allow for producing models to represent user
interface and system-user interaction?

22. Sub-system interaction: Does the methodology allow for producing models to capture interac-

tion/relationships between subsystems in MAS?
23. Models Reuse: Does the methodology provide, or make it possible to use, a library of reusable mod-

els?
Supportive Feature Criteria
1. Software and methodological support: Is the methodology supported by tools and libraries (e.g. li-

braries of agents, agent components, organizations, architectures and technical support)?
2. Open systems and scalability: Does the methodology provide support for open systems and scalabil-

ity (e.g. the methodology allows for dynamic integration/removal of new agents/resources)?
3. Dynamic structure: Does the methodology provide support for dynamic structure (e.g. the methodol-

ogy allows for dynamic system reconfiguration when agents are created/destroyed during execution)?
4. Agility and robustness: Does the methodology provide support for agility and robustness (e.g. the

methodology captures normal processing and exception processing, provides techniques to analyze
system performance for all configurations, or provides techniques to detect/recover from failures)?

5. Support for conventional objects: Does the methodology cater for the use/integration of ordinary
objects in MAS (e.g. the methodology models the agents’ interfaces with objects)?

6. Support for mobile agents: Does the methodology cater for the use/integration of mobile agents in
MAS (e.g. the methodology models which/when/how agent should be mobile)?

7. Support for self-interested agents: Does the methodology provide support for MAS with self-
interest agents (whose goals may be independent or enter in conflict with other agents’ goals)?

8. Support for ontology: Does the methodology cater for the use/integration of ontology in MAS (i.e.
ontology-driven agent systems)?

To evaluate the criteria “Steps in the development process” and “Concepts”, it is help-
ful to have a list of “standard” process steps and concepts to serve as an assessment
checklist. To date, no study has been found that identifies the representative steps and
concepts to be supported by a typical MAS-development process and models. We
therefore provide a pioneering effort in this area. The following list of standard steps
and concepts (Fig. 1) were determined from our investigation of the existing MAS-
development methodologies (references [10] to [15]1). Full details on the specification
of these standard steps and concepts will be presented in a separate paper.

Steps

Identify system goals
Identify system roles
Develop system use cases/scenarios
Identify system functionality
Identify design requirements
Identify agent classes
Specify agent interaction pathways
Define exchanged messages
Specify interaction protocols
Specify contracts/commitments
Specify ACL

Specify conflict resolution
mechanisms

Define agent architecture
Define agents’ mental attitudes

(goals, plans, beliefs…)
Define agents’ interface (capa-

bilities, services…)
Fulfill agent architecture
Define system architecture
Specify organizational structure
Specify group behavior

Specify agent relationships
(inheritance, aggregation &
association)

Specify co-existing entities
Specify environment facilities
Specify agent-environment in-
teraction

Instantiate agent classes
Specify agent instances loca-

tion

Concepts

System goals
System roles
System functionality
Task responsibilities/procedures
Design requirements
Use case/scenarios
Agent classes
Agent instances
Agent’s knowledge/beliefs
Agent’s plans
Agent’s goals
Agent’s roles

Agent’s functionality
Percepts/Events
Agent mobility
Interaction pathways
Exchanged messages
Interaction protocols
Interaction constraints
Conflict resolution mechanisms
Contracts/commitments
ACL
Ontology
Agent inheritance

Agent aggregation
Agent association
Co-existing entities
Environment facilities
Organizational structure
Group behavior
Agent-environment interaction
Environment characteristics
Agent architecture
System architecture
Location of agent instances
Sources of agent instances

Fig. 1. List of standard steps and concepts to be supported by a MAS-development process and
models

1 Due to space constraints, only some of the investigated methodologies are listed here.

In Zhong, N. et al. (eds). 2003. Foundations of Intelligent Systems – Proc. of the 14th Int. Symposium on Methodologies
for Intelligent Systems ISMIS’03, 613-617.
Copyright © 2003 Springer-Verlag

3 Conclusion

The completeness and relevance of our evaluation framework for MAS-development
methodologies are reflected via its attention to both system engineering dimensions
and agent-specific aspects, its focus on all three major components of the methodol-
ogy (i.e. process, techniques and models), and its representative, case-generic evalua-
tion criteria which center on the capabilities and usefulness of the methodology. We
also proposed a list of standard steps and concepts to be supported by a MAS devel-
opment process and models. Future work includes applying the framework to a com-
parative analysis of existing MAS-development methodologies, validating the pro-
posed list of standard steps and concepts, and using the framework and the list to
develop a new, unified MAS-development methodology.

References

1. Wood, B., Pethia, R., Gold, L.R., Firth, R.: A Guide to the Assessment of Software
Development Methods. Technical Report CMUSEI-88-TR-8, SEI, Software Engineering
Institute, Carnegie Mellon University (1988)

2. Jayaratna, N.: Understanding and Evaluating Methodologies - NIMSAD A Systematic
Framework. McGraw-Hill, England (1994)

3. Olle, T.W., Sol, H.G., Tully, C.J. (eds.): Information Systems Design Methodologies - A
Feature Analysis. Elsevier Science Publishers, Amsterdam (1983)

4. The Object Agency Inc.: A Comparison of Object-Oriented Development methodologies.
http://www.toa.com/smnn?mcr.html (1995)

5. Shehory, O., Sturm, A.: Evaluation of modeling techniques for agent-based systems. Proc. of
the 5th Int. Conf. on Autonomous agents (2001) 624-631.

6. O’Malley, S.A., DeLoach, S.A.: Determining When to Use an Agent-Oriented Software En-
gineering Paradigm. Proc. of the 2nd Int. Workshop on Agent-Oriented Software Engineer-
ing (AOSE) (2001).

7. Cernuzzi, L., Rossi, G.: On the Evaluation of Agent-Oriented Modelling Methods. Proc. of
the OOPSLA Workshop on Agent-Oriented Methodologies (2002)

8. Sabas, A., Badri, M., Delisle, S.: A Multidimentional Framework for the Evaluation of Mul-
tiagent System Methodologies. Proc. of the 6th World Multiconference on Systemics, Cy-
bernetics and Informatics (SCI-2002), 211-216.

9. Henderson-Sellers, B., Simons, A., Younessi, H.: The OPEN Toolbox of Techniques.
Addison Wesley Longman Ltd., England (1998)

10.Wood, M.: Multiagent Systems Engineering: A Methodology for Analysis and Design of
Multiagent Systems. MS Thesis, Air Force Institute of Technology, Ohio (2000)

11.Lind, J.: MASSIVE: Software Engineering for Multiagent Systems. PhD Thesis, University
of Saarland, Saarbrucken (1999)

12.Wooldridge, M., Jennings, N.R., Kinny, D.: The Gaia Methodology for Agent-Oriented
Analysis and Design. Autonomous Agents and Multi-Agent Systems 3(3) (2000) 285-312

13.Eurescom: MESSAGE - Methodology for Engineering Systems of Software Agents.
http://www.eurescom.de/public/projectresults/P900-series/907ti1.asp (2001)

14.Padgham, L., Winikoff, M.: Prometheus: A Methodology for Developing Intelligent Agents.
Proc. of the 3rd Int. Workshop on Agent-Oriented Software Engineering (AOSE) (2002)

15.Glaser, N.: Contribution to Knowledge Acquisition and Modelling in a Multi-Agent Frame-
work (the CoMoMAS Approach). PhD Thesis, University of Nancy 1, France (1996)

