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Arrays

Arrays

| CSE2395/CSE3395

= An array is a Perl variable containing a list
m All Perl arrays begin with the character a

> anames
> atemperatures
a8
= Arrays are assigned (copied) with =
> adays = ("Sun", "Mon", "Tue", "Wed", "Thu",
“Fri", "Sat");
> dcopy of days = adays;

Llama2 pages 48-49; Camel3 pages 8-10, 51;
@ Camel2 pages 6-7,47; per ldata manpage
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= Lists cannot hold arrays inside them

» arrays named inside lists are “flattened”

> aweekdays = ("Mon", "Tue", "Wed", "Thu",

"Fri");

» Aadays = ("Sun", dweekdays, "Sat");
adays NOW contains seven elements ¢"sun",
"Mon", "Tue", "wed", "Thu", "Fri ", "Sat")
» nested data structures require references (Topic 11)

= Array names and scalar names are separate
» sdays and adays are unrelated

v

@LWZ page 51; Camel3 pages 52, 73; Camel2 page 47
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Array elements Array elements
msarrayCindexa msarraylindex3
> $days[11 # equal to "Mon” =One array element is of scalar type

in| ®Index may be any scalar (integer) expression in  » thus s to indicate one element of array

| > Ifindex is a scalar variable, still needs $ sign | > sdaysr11 has nothing to dowith sdays

m — $array[$i] m » adays[11 is an array slice, which is probably not what

= » first element has index 0 = yoJ (/\Srclnt Y P Y

Y > last elemen_t has |ndgx $#array Y — array slices are used to select several array elements at once

g - $#array is aways (size of darray - 1) g - adays[1, 2, 3, 4, 51 (equalto list ¢“mon", "Tue",

™M » negative indices count from right hand end of array ™M "wed”, "Thu", "Fri™)

N - $array[-11 is the same element as sarray[$#arrayl N - value of an array slice is a list

W w

9 @ Liama2 page 52: Camel3 pages 8-9: Camel2 page 7 0| wlIf array index is out of bounds, value is unde f
L [ > $daysL7] # equal to undef
[ [

Interpolating arrays

Operating on lists

mLike scalars, arrays can be interpolated into = print

double-quoted strings » prints each element of list in turn

» $alldays = "a@days"; » print "Hello ", $name, "\n";

4 $alldaysiS€qua|K)"Sun Mon Tue Wed Thu Fri Sat" » print alines;
2 » Each element is separated by one space m =sort
| wArray elements can also be interpolated | » returns an alphabetically sorted list
'-J-,' » print "I don't like $daysC11\n"; '-J-,' > @sorted_day_names = sort adays;

. . i (3, 2, 1); # pri 123"

% mAs usual, use braces to disambiguate % T print sort prints
o » $days = "schooldays"; o mreverse
m » print "I don't like $<{days}[1I1\n"; m » returns a list with the elements in reverse order
w » prints “l don't like schooldays[1]” W > afli;;_l= rzeverseSZ]fséiE;m Beh .
v 7] lama2 pages 54-55; el3 chapter
(0] Llamaz2 page 56-57; Camel3 pages 65-66; Carmel2 page 43 v @ Camel2 chapter 3; per Lfunc manpage
[ [

Operating on arrays

Example
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®push, pop

» adds elements to or removes an element from the
right hand side of an array
Qarray = (1, 2, 3, 4);
push @array, 5; # Now 1, 2, 3, 4, 5
$five = pop a@array; # Now 1, 2, 3, 4
push can add several items at once

®unshift, shift
» adds elements to or removes an element from the
left hand side of an array
» unshift has same syntax as push; shift has the
same syntax as pop

Llama2 page 54; Camel3 chapter 29;
Camel2 chapter 3; per  func manpage

>
>
>
>
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# Original list of reindeer.

# An alternative syntax:

# @Areindeer = qw(Dasher Dancer Prancer

# Vixen Comet Cupid Donner Blitzen);

dreindeer = ('Dasher', 'Dancer', 'Prancer',
'Vixen', 'Comet', 'Cupid', 'Donner', 'Blitzen');

# Rudolph, with your nose so bright ...
unshift @dreindeer, "Rudolph™; # Add to front

# Sort the list and reverse it.
dreindeer = reverse sort dreindeer;

# Print them out. Prints:

# Vixen Rudolph Prancer Donner Dasher
# Dancer Cupid Comet Blitzen

print "dreindeer\n";
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Context Context
=|n C (and Perl), comma operator can be used = Depends on context of code
to perf<_)rm two operations . = Context means what is expected at a certain
> for (121, j=1; alil == aljl; i++, j++) oint in the program (scalar or list)
o » value of a, b is value of b L p_ o
m| > parentheses can be used for grouping m| wList context: if list expected
m » so value of (a,b) is value of b m » da = ($apples, $oranges, $pears);
0| ®=Sois (sapples, $oranges, $pears)a 9 :g:‘:zec‘iisz:;'fﬁg‘zg;gg::ﬂ%qlng to array
wn| three-element list or the single value wn .
& spears? N - Scalar context: if scalar expected
o~ o » $a = ($apples, $oranges, $pears);
W W iani
A Liama2 page 55: Camel3 pages 69-72 &|  » treated as a scalar because assigning to scalar
v Camel2 pages 45-46; perldata manpage v > sa receives value of spears
1 1
Context Context
mSome operators and functions need a scalar mWhat if a scalar is used where a list is
> length, +, rand, . expected?
» force scalar context on their arguments > darray = $kiwifruit;
n . . n It :
o wSome operators and functions need a list o *assigning toarray, so list context
m > print, push, sort m » scalar is promoted to a one-element array
™M J ’ ) = fwifruit);
w| » force list context on their arguments w| Sameasaarray = (Skiwifruit);
w . s w » print "Hello world";
U =Some operators and functions don'’t care v
g » reverse, <STDIN>, chomp g
™ » use whatever context they are given ™
m » may produce different results depending on context E
(%] w
0] ]
1 1

Context

Using context

m\What if an array is used when a scalar is

expected?

» $scalar = @afruitsalad;

» assigning to scalar, so scalar context

» array evaluated in scalar context is converted to size
of array

» $scalar receives number of elements in
afruitsalad

» scalar context can be enforced with scatar function
— print scalar adays; # prints 7

» no general rule for converting any list function result
into scalar
— some functions have their own rules
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# Read in all Llines.

# <STDIN> in Llist context reads until EOF,
# one line per Llist element.

Alines = <STDIN>;

# Reverse dlines array.
dbackwards = reverse adlines;

# Print @abackwards array.
print @dbackwards;

# This entire program could be written
# as one line:
# print reverse <STDIN>;
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perlsyn, perlvar manpages
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