Last time

_ s Scalar values
E » numbers
Lists and arrays » strings
o o =Scalar variables
™ ™M
e @ =Scalar operators
Learning Perl 2nd edition :
w w
v chapter 3, pages 48-57] . Cor]stc_>le :n%Ut/OUtPUt
Py : - in » printing to the screen
o Programr_mng Perl 3rd edition a » reading from the keyboard
™ pages 69-76 P - . ‘
I.IN.I Programming Perl 2nd edition ™ m [nterpolating into strings
w pages 47-49 w
v @ perldata manpage o
™ ™
To be covered today Lists
aLists 1 [Sequencesofsalas
m Arrays m A ordered sequence of scalars
» variables that contain lists » each element may be any scalar expression,
aList and array functions .|ncllfd|ng variables or I|t.erals
@ sorting lists i = List literals enclosed in parentheses
) » adding and removing array elements ™ » (-5.3, 42, "porcupine", $a+10)
g =Context g - :?Ss;delement uses value of $a at the time the list literal is
» scalar versus list . .
% % = Each element has a position (index)
o o » first element is at index O
™ %)
w w
7 w Llama?2 pages 48-49; Camel3 pages 8-10, 72-75
v u Camel2 pages 6-7, 47; per Ldata manpage
™ ™

Arrays

Arrays

| CSE2395/CSE3395

= An array is a Perl variable containing a list
m All Perl arrays begin with the character a

> anames
> atemperatures
a8
= Arrays are assigned (copied) with =
> adays = ("Sun", "Mon", "Tue", "Wed", "Thu",
“Fri", "Sat");
> dcopy of days = adays;

Llama2 pages 48-49; Camel3 pages 8-10, 51;
@ Camel2 pages 6-7,47; per ldata manpage

| CSE2395/CSE3395

= Lists cannot hold arrays inside them

» arrays named inside lists are “flattened”

> aweekdays = ("Mon", "Tue", "Wed", "Thu",

"Fri");

» Aadays = ("Sun", dweekdays, "Sat");
adays NOW contains seven elements ¢"sun",
"Mon", "Tue", "wed", "Thu", "Fri ", "Sat")
» nested data structures require references (Topic 11)

= Array names and scalar names are separate
» sdays and adays are unrelated

v

@LWZ page 51; Camel3 pages 52, 73; Camel2 page 47

5

6

[[
Array elements Array elements
msarrayCindexa msarraylindex3
> $days[11 # equal to "Mon” =One array element is of scalar type

in| ®Index may be any scalar (integer) expression in » thus s to indicate one element of array

| > Ifindex is a scalar variable, still needs $ sign | > sdaysr11 has nothing to dowith sdays

m — $array[$i] m » adays[11 is an array slice, which is probably not what

= » first element has index 0 = yoJ (/\Srclnt Y P Y

Y > last elemen_t has |ndgx $#array Y — array slices are used to select several array elements at once

g - $#array is aways (size of darray - 1) g - adays[1, 2, 3, 4, 51 (equalto list ¢“mon", "Tue",

™M » negative indices count from right hand end of array ™M "wed”, "Thu", "Fri™)

N - $array[-11 is the same element as sarray[$#arrayl N - value of an array slice is a list

W w

9 @ Liama2 page 52: Camel3 pages 8-9: Camel2 page 7 0| wlIf array index is out of bounds, value is unde f
L [> $daysL7] # equal to undef
[[

Interpolating arrays

Operating on lists

mLike scalars, arrays can be interpolated into = print

double-quoted strings » prints each element of list in turn

» $alldays = "a@days"; » print "Hello ", $name, "\n";

4 $alldaysiS€qua|K)"Sun Mon Tue Wed Thu Fri Sat" » print alines;
2 » Each element is separated by one space m =sort
| wArray elements can also be interpolated | » returns an alphabetically sorted list
'-J-,' » print "I don't like $daysC11\n"; '-J-,' > @sorted_day_names = sort adays;

. . i (3, 2, 1); # pri 123"

% mAs usual, use braces to disambiguate % T print sort prints
o » $days = "schooldays"; o mreverse
m » print "I don't like $<{days}[1I1\n"; m » returns a list with the elements in reverse order
w » prints “l don't like schooldays[1]” W > afli;;_l= rzeverseSZ]fséiE;m Beh .
v 7] lama2 pages 54-55; el3 chapter
(0] Llamaz2 page 56-57; Camel3 pages 65-66; Carmel2 page 43 v @ Camel2 chapter 3; per Lfunc manpage
[[

Operating on arrays

Example

| CSE2395/CSE3395

®push, pop

» adds elements to or removes an element from the
right hand side of an array
Qarray = (1, 2, 3, 4);
push @array, 5; # Now 1, 2, 3, 4, 5
$five = pop a@array; # Now 1, 2, 3, 4
push can add several items at once

®unshift, shift
» adds elements to or removes an element from the
left hand side of an array
» unshift has same syntax as push; shift has the
same syntax as pop

Llama2 page 54; Camel3 chapter 29;
Camel2 chapter 3; per func manpage

>
>
>
>

| CSE2395/CSE3395

Original list of reindeer.

An alternative syntax:

@Areindeer = qw(Dasher Dancer Prancer

Vixen Comet Cupid Donner Blitzen);

dreindeer = ('Dasher', 'Dancer', 'Prancer',
'Vixen', 'Comet', 'Cupid', 'Donner', 'Blitzen');

Rudolph, with your nose so bright ...
unshift @dreindeer, "Rudolph™; # Add to front

Sort the list and reverse it.
dreindeer = reverse sort dreindeer;

Print them out. Prints:

Vixen Rudolph Prancer Donner Dasher
Dancer Cupid Comet Blitzen

print "dreindeer\n";

1

12

1 |
Context Context
=|n C (and Perl), comma operator can be used = Depends on context of code
to perf<_)rm two operations . = Context means what is expected at a certain
> for (121, j=1; alil == aljl; i++, j++) oint in the program (scalar or list)
o » value of a, b is value of b L p_ o
m| > parentheses can be used for grouping m| wList context: if list expected
m » so value of (a,b) is value of b m » da = ($apples, $oranges, $pears);
0| ®=Sois (sapples, $oranges, $pears)a 9 :g:‘:zec‘iisz:;'fﬁg‘zg;gg::ﬂ%qlng to array
wn| three-element list or the single value wn .
& spears? N - Scalar context: if scalar expected
o~ o » $a = ($apples, $oranges, $pears);
W W iani
A Liama2 page 55: Camel3 pages 69-72 &| » treated as a scalar because assigning to scalar
v Camel2 pages 45-46; perldata manpage v > sa receives value of spears
1 1
Context Context
mSome operators and functions need a scalar mWhat if a scalar is used where a list is
> length, +, rand, . expected?
» force scalar context on their arguments > darray = $kiwifruit;
n . . n It :
o wSome operators and functions need a list o *assigning toarray, so list context
m > print, push, sort m » scalar is promoted to a one-element array
™M J ’) = fwifruit);
w| » force list context on their arguments w| Sameasaarray = (Skiwifruit);
w . s w » print "Hello world";
U =Some operators and functions don'’t care v
g » reverse, <STDIN>, chomp g
™ » use whatever context they are given ™
m » may produce different results depending on context E
(%] w
0]]
1 1

Context

Using context

m\What if an array is used when a scalar is

expected?

» $scalar = @afruitsalad;

» assigning to scalar, so scalar context

» array evaluated in scalar context is converted to size
of array

» $scalar receives number of elements in
afruitsalad

» scalar context can be enforced with scatar function
— print scalar adays; # prints 7

» no general rule for converting any list function result
into scalar
— some functions have their own rules

| CSE2395/CSE3395

Read in all Llines.

<STDIN> in Llist context reads until EOF,
one line per Llist element.

Alines = <STDIN>;

Reverse dlines array.
dbackwards = reverse adlines;

Print @abackwards array.
print @dbackwards;

This entire program could be written
as one line:
print reverse <STDIN>;

| CSE2395/CSE3395

17

18

perlsyn, perlvar manpages

— !—\
Covered today Going further
= Lists [More things related to today’s topic
» sequences of scalars Ref
mRererences
lArra_ys - » nested data structures
» variables that contain lists » Topic 11
1| always start with a character d
o : K Emap dNd grep
m - I:ISt and array functions » useful list and array functions
W sort, reverse . » Camel3 pages 740-741, 730; Camel2 pages 186-
3 > push, pop, shift, unshift 187,178-179
| ®Context
o » scalar context when scalar expected
M| > list context when list expected
9
]
19 20
—
Next time CSE2395/CSE3395 lecture notes copyright
— - - © 2000-2001 Deborah Pickett.
B to be covered in Topic 4 Reproduction of this presentation for
= Control structures nonprofit study use is permitted. All other
> while, if, foreach, etc. reproduction, including for other
educational courses, must be authorized in
= True and false values writing by the author
o =Statement modifiers o
m » An alternative way to do some control structures m
wl wPerl defaults w
v >$_, <> v
~ S~
& Reading: 2
) 1 Learning Perl| 2nd edlition chapter 4, pages 72-73 m
m g6og§amming Per| 3rd edlition pages 111-127, 658-659, m
g @ Programming Per! 2nd edition pages 95-105, 131, 53-55 0

21

