Last time

_ mlists
» sequences of scalars
Control structures = Arrays
0 1n - -
o o » variables that contain lists
m Learning Perl 2nd edition m » always start with a character
hapter 4 - . .
] chapter 6. pages o8 e W wlist and array functions
v chapter 9, pages 105- 106 v > sort, reverse
2 Programming Perl 3rd edition g > push, pop, shift, unshift
m pages 111-127, 658-659, 80-83 ™ wContext
N Programming Perl 2nd edition o
W g g W » scalar context when scalar expected
0 @ pages 95-105, 53-54, 131 & > list context when list expected
L perlsyn, perlvar manpages L
— —
To be covered today Control structures
= Control structures 1 Defimton
> if,while/until,for,foreach,do—while
= Any programming construct that alters the

mTrue and false values flow of a program

u Loop control » selection
2 » labels, next, Last, redo m '_tif/tg(?lse, unless
™M) e ™M » iteration
m .EXpreSSK)n mOdl.ﬂerS m — while,until, for, foreach
e » another way of doing control structures = ~ last, next, redo
Y wProgram arguments Y
ok > @ARGV array ok
™M ™
~| ®Perl defaults ~N
W+ s variable (standard argument) o
) » <> filehandle (diamond operator))

—

The if/else statement

The while statement

unless (condition) is same as if ¢!condition>

it (condition evaluated in scalar context
) # These lines executed if condition is true.
sz (condition2> <—zero or more e ls it clauses allowed
) # These lines executed if condition2 is true.
lee <«— else clause is optional
! # These lines executed if all
cond'lt'loBs are fals

races are aﬁlvays required, unlike in C

Llama2 pages 59-61; Camel3 page 114-115;
@ Camel2 page 98; perLsyn manpage

| CSE2395/CSE3395

| CSE2395/CSE3395

until ¢condition) is same as while ¢!condition)
/evaluated in scalar context

while (condition)

{
This code executed until condition is false.
Block is never entered if condition was
always false.

~— braces are always required

Llama2 pages 61-62; Camel3 pages 115-116
@ Camel2 page 98; perLsyn manpage

5

6

.

[

The for statement

Boolean evaluation

evaluated in scalar context =Boolean conditions evaluated in scalar
l context as strings
for (initializer; condition; increment) mFalse values are
| < n » = (the empty string)
% # initializer code executed once before loop. g » undef (the undefined value)
) m - converted to empty string when evaluated as string
I'J',I # Block is executed while condition is true. I'J',I » uge (numberOshouIdbefaIse)
g # increment code always executed before end E > empty arrays
n # of each iteration. n - in scalar context, returns number of elements (0)
o 2 o
o N\ m ®True values are
By braces are always required oY » everything else
Y Llama2 page 63; Camel3 pages 116-118 v Llama2 page 59; Camel3 pages 29-30
v @Cmﬂe& pages 98-99; perlsyn manpage v Camel2 page 46; perldata manpage
[[
Example The foreach statement
Read in lines until EOF.
while (defined($input = <STDIN>)) .)) .
< if omitted, default iterator is s _
chomp $input;
g push @lines, $input; m foreach $var (l.'ist)‘(-pareﬂtheses are always needed
3 {
m m # $var equals each element of Llist in turn.
w # Get a random number of the right size. w # Llist may be a literal or named array.
U srand; c X
E $pick = int(rand(scalar alines)); E ‘\ braces are always needed
o # Print line indexed by Spick. o
o~ print $linesC$pickl, "\n"; o~
0 7 Liama2 pages 63-65; Camel3 pages 118-120
lama2 pages 63-65; el3 pages 118-
v v @Cmﬂe& pages 100-101; pertsyn manpage
[[

Example

The default argument

Read input until EOF (note list context).
ddata = <STDIN>;

Iterate over every element in ddata.

Use of dadata could be eliminated with:

foreach $number (<STDIN>)

foreach $number (addata)

{
This actually modifies elements of ddata.
chomp $number;

$total += $number;
X

Print result.
print "Total is $total\n";

| CSE2395/CSE3395

=With many functions taking an argument,
naming this argument is optional

m Default value used in this case is special

Llama2 pages 64, 72-73; Camel3 pages 658, 682
Camel2 page 131; perLvar manpage

in variable s_

m Eprint;

E-‘l > same as print $_;

Yl myhile (KSTDIN>)

2 > same as while (defined($ = <STDIN>))
m > special case, only applies to filehandle in while
oY condition

w

v

1

12

Example

Explicit version using $line

while (defined($line = <STDIN>))
{

print $line;
3

Implicit version using $_

while (<KSTDIN>)
{

print;
3

Tiny version using expression modifier

print while <STDIN>;

Expression modifiers

m\Works for if, unless, while, until,
foreach

if (condition)

{ Normal i f
statement; statement

3

same statement as

stateAment if COndIt¢On; modified expression

N— braces, parentheses not needed
only single simple expression allowed

LlamaZ pages 105-106; Camel3 pages 112-113
Camel2 page 96; perLsyn manpage

13

14

The do-while statement

unlike with a normal whi Le expression modifier,
which tests the condition first, the do-while
statement always performs the loop body once before
testing the condition

do {
This code is always executed at least once.
} while condition;

until also allowed

@ Llama2 page 62; Camel3 page 112, 701; Camel2 page 158
perlsyn, perlfunc manpages

Command-line arguments

= 3ARGV contains command-line parameters
given to script
» empty array if no parameters
» unlike C, no need for argc parameter because
AARGV’S size is known

m Script name is in special variable s0
» different from C where argvr01 is program name
and first parameter is in argvC11

LlamaZ2 page 73; Camel3 page 659
@CWYBIZ pages 138, 136; perlvar manpage

15

16

Example

params.pl

% params.pl blorb rezrov cleesh
Program name is: params.pl
Parameters are:

0: blorb

1: rezrov

2: cleesh

<> (diamond) operator

= Often useful to have a program read from
files if named, standard input otherwise

= [f no command-line arguments given (aARGV
is empty):
» <> iS same as <STDIN>

m |[f command-line arguments given (aArRGV
contains elements):

» <> reads each named file in turn (each element of
AARGV)

Llama2 page 73-74, Camel3 pages 80-83
Camel2 pages 53-55; perlsyn manpage

17

18

[

Example Loop control commands
mReading from <> duplicates behaviour of mlast
many Unix commands » exits the innermost containing loop
n # cat program that duplicates n » like C's break statement
o # from STDIN if no parameters, otherwise o Enext
m # concatenates all named files to STDOUT m . . L
m m » jumps to end of innermost containing loop
Woouhite <» u » executes increment code of for loop, then tests loop
u < U condition
n print; n » continues from beginning of loop
g > g » like C's cont inue Statement
m # Even tinier version using expression modifier m
7]) . 3 w LlamaZ pages 101-104; Camel3 pages 120-123
U| print while <>; v @Cﬂme&pages101—103;pertsynmanpage
| |

Loop control commands

Example

mredo # Mail messages come in two parts: the header
. . L. # and the body. The first blank Lline in the
>Jumpstostartoflnnerrr_]qstcontammg IOOp # message separates the header from the body.
» does not test loop condition
g » no equivalent in C without use of goto m # Read each line of the email message.
LINE: while (<>)
Ml ®last, next and redo can take a label mo<
I.J.‘I » label attached to an enclosing block I.J.‘I # If line is blank (contains only a newline)
U * command now repeats/exits that loop instead of U # then exit the while loop.)
7y innermost containing loop | Note use of expression modifier (If) &
@ > not possible in C without use of goto O (Lot LINE 118 eg g oner neRe)
2 > label should be typed in all capitals o -
w w # Print header Lline.
G S N print;
™ 1
Covered today Going further
= Control structures | [Morethings related to today’s topic |
» if, while, for, foreach, do-while
.T d fal | = Loops, blocks and goto
rue and Iaise vaiues » more scary things to do with control structures,
= Loop control including implementing C’s switch
o > labels, next, Last, redo >]ngn$g6pa}%% 123-127, 729-730; Camel2 pages
m . ar - s
m| ®Expression modifiers P . .
y erl special variables
H > another way of doing control structures > $ aI/::RGv $>, %ENV, $&, aINC: line noise with
% = Program arguments meaning
o > ARGV array » Camel3 pages 653-675; Camel2 pages 127-140
™
~ ®Perl defaults
H » $_variable (standard argument)
U » <> filehandle (diamond operator)

23

24

Next time

mHashes
» associative arrays
» arrays indexed by strings

= Hash variables and functions

Reading:
| Learning Perl 2nd edition chapter 5, pages 66-71
Programming Per| 3rd edition pages 76-78

Programming Perl| 2nd edition pages 50-51
perldata manpage

25

