Last time

m Regular expressions
Functions = Pattern matching
Ln LN » /pattern/
& M = Substituti
vy M "Su stitution
i L » s/pattern/replace/
v Learning Perl 2nd edition %) . .
v chapter 8, pages 92-100 U = Functions that use regular expressions
Lo Programming Perl 3rd edition Ln > split, join
o o
() pages 217-225 ')
N Programming Perl 2nd edition N
] L
v pages 111-121 w)
v @ perlsub manpage v
1 2
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To be covered today Subroutines
= Defining functions (subroutines) 1 [ Notesandterminology
= Calling functions = In Perl, called functions or subroutines
= Returning values from functions » no difference in meaning
0 = Passing arguments 1n| = All subroutines can take parameters
% » the @ array % > called arguments or actual parameters by caller
) L | - bl M » called (formal) parameters by function
W =Local variables L ;
a » my and local keywords ﬂ = No type checking
L d 4 » of parameters or return value
LOQ = Sorting arbitrarily gz » optional prototypes allow rudimentary type checking
m M = No formal naming of parameters
w W » programmer can do this if desired
v v
U 9}
3 4
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Defining a function Subroutines
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subroutines are defined with sub keyword

~——name of subroutine goes here
sub greet {
print "Hello there.\n";
3

K body of subroutine can contain anything

braces are required

LlamaZ2 pages 92-93; Camel3 pages 217-218
Camel2 pages 111-112
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= Subroutines may be declared anywhere in the
program
» definitions are skipped on execution
» by convention, definitions go first or last in code
= Subroutines can access all global variables
» can declare localized variables with my keyword

LlamaZ2 pages 93, 96; Camel3 page 218, 223
Camel2 page 189
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Subroutines Subroutines
. . o = Subroutines return to their caller the last
= Technically, subroutine names begin with expression evaluated
special character & > sub pi { 3.1415926535898; )
» variables $d ad %d and function &d are
th all separate ars, adays, tdays ars i = Can use return keyword to return sooner
() . . . mM » sub abs a { if ($a >= 0) { return $a; 2
m| =In practice, no leading character is needed M else { return -Sa; > 3}
u » when declaring, not used in sub definition o Return value can be scalar or list
(@] » when calling, parentheses after the subroutine name (@] i
I.I\I identify it as a function call l.f\\ » sub f1rst_1.:wf)_args { return. @ARGVLO,11; 2}
o — days(2000, 1, 1) # or could say &days(2000, 1, 1) o » return value is interpreted according to context
m m subroutine was called in
m m » can use wantarray function to determine context
G LlamaZ2 pages 92-93; Camel3 page 218 G LlamaZ2 page 94; Camel3 pages 219, 228
Camel2 pages 111-112 Camel2 pages 112, 241
| |
Parameter passing Example

= Caller names arguments in parentheses after

function name # Declare the thotenuse function.

> $dayname = weekday($year, $month, $day); sug r\zggszng:iameters meaningful names.
n » as with built-in functions, parentheses can be n # Could also have done:
o omitted if subroutine is pre-declared o # ($x, $y) = @ _;
m . . . m $x = $_[01; sy = $_[1];
m| "Arguments are formed into list and placed in WY returnTsare(Sx * Sx + Sy % Sy);
w special local array variable a__ oo
Y wSubroutine can access @_ or individual Yl cead two numbers on one Line.
"OQ members gz print "Enter two numbers: ";
m » sub weekday € (Sy, $m, $d) = @_; ... ) m ($a, $b) = split /\s+/, <STDIN>;
w » sub weekday { $y = $_[01; ... 2 | print "Hypotenuse is: ",
[ LlamaZ2 pages 94-96; Camel3 pages 219-221 4] hypotenuse($a, $b), "\n";
v Camel2 page 112 v
[ [

Example Local variables with my
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# Read some numbers into anums.
while (<>)
{
chomp; push @nums, $_;
3
print "Sum is ", sum{(anums), "\n";
sub sum {
$sum = 0;
# Iterate $_ over parameter list @_.
foreach (a_) # $_ 1is the default iterator.

{

$sum += $ ; # Add this list element to asum
3
return $sum;
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= By default, all variables are global

= Variables can be declared local (lexical
scoping) with my keyword
»my ($sum);

= Old value is restored at end of enclosing
block (often end of subroutine)

m Can localize and assign in one step
>»my ($x, $y) = a ;
» parentheses needed because of precedence

LlamaZ2 pages 96-97; Camel3 page 132-133
Camel2 page 189

# Protects old value of $sum.
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Example local versus my
# Almost same as the Perl builtin function grep.
sub fitter { = Perl has another kind of localizing of
# Declare meaningful names for parameters. . bl . k d
my ($pattern, avalues); variables, using Local kKeywor
# D L t f t L .
- CBresuley, rperary array for rerurn vatae i =Use Local where my does not work
# shift in a function defaults to using a . m » local $ ; # my $ isn't allowed.
m _ _ _
m $pattern = shift; m .
w avalues = @_; w = Otherwise, use my
@] (6] » local causes dynamic scoping of variables (they are
n foreach (avalues) { B visible inside all called functions); this is unfamiliar to
o if /$pattern/ { # Test $ against $pattern. o C programmers
m N push @result, $ ; # Save this string. m » my causes lexical scoping, which behaves like local
w 3 w variables in C programs
G @result; # Return value. G LlamaZ2 pages 98-99; Camel3 pages 135-136
3 Camel2 pages 184-185
[

Global variables: our

Parameter passing

= Arrays and hashes are unwound into single list
= Perl 5.6 has our keyword before being stored in a_
» declares global variable to be visible in current scope » sizes of arrays are lost in unwinding
» our $house; . .
. g = |f passing one array, make it the last argument
= Not needed unless programming under use ™ Passi h , v b
strict 'vars' m Idassmg more than one array can t usually be
» undeclared variable is normally automatically global H Ohe . . .
» use strict is recommended for modules or large U > diff(aa, ab) will pass one list containing all elements
programs n in both aa and ab to the diff function
o > if diff does (ax,ay) = a_then ax gets all elements,
m and ay is empty
w » can be solved with references (Topic 11)
w)
@ Camel3 pages 133-135 (@] Camel3 pages 221, 224-225; Camel2 page 114
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Sorting Example

m sort function normally sorts items
alphabetically (lexicographically)

= Can sort by other criteria by providing

# For code readability, use adverbs for names.
sub numerically
{

# $a and $b are automatically localized

n . f n # in this function.
(¢)) comparison function i . ()} # Could also have said: return $a <=> $b;
m » does not use normal parameter-passing mechanism m if ($a < $b) { return -1 3
m » inside comparison function, $a and $b are aliases of m elsif ($a > $b) { return 1 2
v two list elements v else { return 0 2
Ul > function must return v
N - i Ln
o Iessthanzer0|f$a precedes $b O alist = (1, 128, 16, 2, 32, 4, 64, 8);
m - zero if $a and $b are the same m
N — greater than zero if $a follows $b N # Note name of function between keyword
H . H # and Llist; also no comma after function name.
O = oz 150335 Comespae 2073 R
- ; perlfunc




Covered today
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Going further

« Defining functions (subroutines) | | Morethings related to today’s topic |
> sub keyword = Prototypes
. . » making user-defined subroutines behave more like
= Calling subroutines builtins
0w " Returning values from subroutines » Camel3 pages 225-228; Camel2 pages 118-121
o > last expression evaluated in function = Code generation
m » return keyword > building Perl code on-the-fly with eval
‘I.H = Passing arguments » Camel3 pages 705-707; Camel2 pages 161-163
Ul »thea_array = Built-in functions
LN . » a myriad of standard subroutines provided in Perl
% ® Local variables » Camel3 pages 677-830; Camel2 pages 141-242
~ » my and Local keywords
w ] ) o mBEGIN and END
] = Sorting lists arbitrarily » special functions that run before or after other code
> comparison functions » Camel3 pages 480-485; Camel2 pages 283-284
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Next time CSE2395/CSE3395 lecture notes copyright
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= File operations
» open, close

m Reading from and writing to files
u File tests
m Scanning directories

Reading:
Learning Perl 2nd edition chapters 10, 12,13
pages 108-115, 129- 133, 134-141
1 Programming Perl| 3rd edition pages 20-22, 28-29, 97-
100, 747-755, 770
9  Programming Per| 2nd edition pages 12-14, 19-20, 85-87,
191-195
@ perlfunc, perlopentut manpages
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