Last time

m Regular expressions
Functions = Pattern matching
Ln LN » /pattern/
& M = Substituti
vy M "Su stitution
i L » s/pattern/replace/
v Learning Perl 2nd edition %) . .
v chapter 8, pages 92-100 U = Functions that use regular expressions
Lo Programming Perl 3rd edition Ln > split, join
o o
() pages 217-225 ')
N Programming Perl 2nd edition N
] L
v pages 111-121 w)
v @ perlsub manpage v
1 2
[[
To be covered today Subroutines
= Defining functions (subroutines) 1 [Notesandterminology
= Calling functions = In Perl, called functions or subroutines
= Returning values from functions » no difference in meaning
0 = Passing arguments 1n| = All subroutines can take parameters
% » the @ array % > called arguments or actual parameters by caller
) L | - bl M » called (formal) parameters by function
W =Local variables L ;
a » my and local keywords ﬂ = No type checking
L d 4 » of parameters or return value
LOQ = Sorting arbitrarily gz » optional prototypes allow rudimentary type checking
m M = No formal naming of parameters
w W » programmer can do this if desired
v v
U 9}
3 4
[[
Defining a function Subroutines

| CSE2395/CSE3395

subroutines are defined with sub keyword

~——name of subroutine goes here
sub greet {
print "Hello there.\n";
3

K body of subroutine can contain anything

braces are required

LlamaZ2 pages 92-93; Camel3 pages 217-218
Camel2 pages 111-112

| CSE2395/CSE3395

= Subroutines may be declared anywhere in the
program
» definitions are skipped on execution
» by convention, definitions go first or last in code
= Subroutines can access all global variables
» can declare localized variables with my keyword

LlamaZ2 pages 93, 96; Camel3 page 218, 223
Camel2 page 189

5

6

| /
Subroutines Subroutines
. . o = Subroutines return to their caller the last
= Technically, subroutine names begin with expression evaluated
special character & > sub pi { 3.1415926535898;)
» variables $d ad %d and function &d are
th all separate ars, adays, tdays ars i = Can use return keyword to return sooner
() . . . mM » sub abs a { if ($a >= 0) { return $a; 2
m| =In practice, no leading character is needed M else { return -Sa; > 3}
u » when declaring, not used in sub definition o Return value can be scalar or list
(@] » when calling, parentheses after the subroutine name (@] i
I.I\I identify it as a function call l.f\\ » sub f1rst_1.:wf)_args { return. @ARGVLO,11; 2}
o — days(2000, 1, 1) # or could say &days(2000, 1, 1) o » return value is interpreted according to context
m m subroutine was called in
m m » can use wantarray function to determine context
G LlamaZ2 pages 92-93; Camel3 page 218 G LlamaZ2 page 94; Camel3 pages 219, 228
Camel2 pages 111-112 Camel2 pages 112, 241
| |
Parameter passing Example

= Caller names arguments in parentheses after

function name # Declare the thotenuse function.

> $dayname = weekday($year, $month, $day); sug r\zggszng:iameters meaningful names.
n » as with built-in functions, parentheses can be n # Could also have done:
o omitted if subroutine is pre-declared o # ($x, $y) = @ _;
m . . . m $x = $_[01; sy = $_[1];
m| "Arguments are formed into list and placed in WY returnTsare(Sx * Sx + Sy % Sy);
w special local array variable a__ oo
Y wSubroutine can access @_ or individual Yl cead two numbers on one Line.
"OQ members gz print "Enter two numbers: ";
m » sub weekday € (Sy, $m, $d) = @_; ...) m ($a, $b) = split /\s+/, <STDIN>;
w » sub weekday { $y = $_[01; ... 2 | print "Hypotenuse is: ",
[LlamaZ2 pages 94-96; Camel3 pages 219-221 4] hypotenuse($a, $b), "\n";
v Camel2 page 112 v
[[

Example Local variables with my

| CSE2395/CSE3395

Read some numbers into anums.
while (<>)
{
chomp; push @nums, $_;
3
print "Sum is ", sum{(anums), "\n";
sub sum {
$sum = 0;
Iterate $_ over parameter list @_.
foreach (a_) # $_ 1is the default iterator.

{

$sum += $; # Add this list element to asum
3
return $sum;

| CSE2395/CSE3395

= By default, all variables are global

= Variables can be declared local (lexical
scoping) with my keyword
»my ($sum);

= Old value is restored at end of enclosing
block (often end of subroutine)

m Can localize and assign in one step
>»my ($x, $y) = a ;
» parentheses needed because of precedence

LlamaZ2 pages 96-97; Camel3 page 132-133
Camel2 page 189

Protects old value of $sum.

11

12

.

Example local versus my
Almost same as the Perl builtin function grep.
sub fitter { = Perl has another kind of localizing of
Declare meaningful names for parameters. . bl . k d
my ($pattern, avalues); variables, using Local kKeywor
D L t f t L .
- CBresuley, rperary array for rerurn vatae i =Use Local where my does not work
shift in a function defaults to using a . m » local $; # my $ isn't allowed.
m _ _ _
m $pattern = shift; m .
w avalues = @_; w = Otherwise, use my
@] (6] » local causes dynamic scoping of variables (they are
n foreach (avalues) { B visible inside all called functions); this is unfamiliar to
o if /$pattern/ { # Test $ against $pattern. o C programmers
m N push @result, $; # Save this string. m » my causes lexical scoping, which behaves like local
w 3 w variables in C programs
G @result; # Return value. G LlamaZ2 pages 98-99; Camel3 pages 135-136
3 Camel2 pages 184-185
[

Global variables: our

Parameter passing

= Arrays and hashes are unwound into single list
= Perl 5.6 has our keyword before being stored in a_
» declares global variable to be visible in current scope » sizes of arrays are lost in unwinding
» our $house; . .
. g = |f passing one array, make it the last argument
= Not needed unless programming under use ™ Passi h , v b
strict 'vars' m Idassmg more than one array can t usually be
» undeclared variable is normally automatically global H Ohe . . .
» use strict is recommended for modules or large U > diff(aa, ab) will pass one list containing all elements
programs n in both aa and ab to the diff function
o > if diff does (ax,ay) = a_then ax gets all elements,
m and ay is empty
w » can be solved with references (Topic 11)
w)
@ Camel3 pages 133-135 (@] Camel3 pages 221, 224-225; Camel2 page 114
15 16
[[
Sorting Example

m sort function normally sorts items
alphabetically (lexicographically)

= Can sort by other criteria by providing

For code readability, use adverbs for names.
sub numerically
{

$a and $b are automatically localized

n . f n # in this function.
(¢)) comparison function i . ()} # Could also have said: return $a <=> $b;
m » does not use normal parameter-passing mechanism m if ($a < $b) { return -1 3
m » inside comparison function, $a and $b are aliases of m elsif ($a > $b) { return 1 2
v two list elements v else { return 0 2
Ul > function must return v
N - i Ln
o Iessthanzer0|f$a precedes $b O alist = (1, 128, 16, 2, 32, 4, 64, 8);
m - zero if $a and $b are the same m
N — greater than zero if $a follows $b N # Note name of function between keyword
H . H # and Llist; also no comma after function name.
O = oz 150335 Comespae 2073 R
- ; perlfunc

Covered today

[

Going further

« Defining functions (subroutines) | | Morethings related to today’s topic |
> sub keyword = Prototypes
. . » making user-defined subroutines behave more like
= Calling subroutines builtins
0w " Returning values from subroutines » Camel3 pages 225-228; Camel2 pages 118-121
o > last expression evaluated in function = Code generation
m » return keyword > building Perl code on-the-fly with eval
‘I.H = Passing arguments » Camel3 pages 705-707; Camel2 pages 161-163
Ul »thea_array = Built-in functions
LN . » a myriad of standard subroutines provided in Perl
% ® Local variables » Camel3 pages 677-830; Camel2 pages 141-242
~ » my and Local keywords
w]) o mBEGIN and END
] = Sorting lists arbitrarily » special functions that run before or after other code
> comparison functions » Camel3 pages 480-485; Camel2 pages 283-284
19 20
™
Next time CSE2395/CSE3395 lecture notes copyright

| CSE2395/CSE3395

= File operations
» open, close

m Reading from and writing to files
u File tests
m Scanning directories

Reading:
Learning Perl 2nd edition chapters 10, 12,13
pages 108-115, 129- 133, 134-141
1 Programming Perl| 3rd edition pages 20-22, 28-29, 97-
100, 747-755, 770
9 Programming Per| 2nd edition pages 12-14, 19-20, 85-87,
191-195
@ perlfunc, perlopentut manpages

| CSE2395/CSE3395

© 2000-2001 Deborah Pickett.
Reproduction of this presentation for
nonprofit study use is permitted. All other
reproduction, including for other
educational courses, must be authorized in
writing by the author.

21

22

