Last time
S Topen The World Wide Web model
R f » HTTP and HTML

" ererences »n ™ The Common Gateway Interface (CGI) model
o o » interactive documents on the World Wide Web
™ ™ . .
e tm = Installing and running CGI programs
& Y mThe c61.pm module
S Programming Per| 3rd edition 9 . P
o chapters 8-9, pages 242-287 @ w=Passing parameters to CGI programs
i Programming Perl 2nd edition [» submitting forms
w chapter 4, pages 243-275 w -Generating HTML
3 @ perlref, perlreftut, perllol, perldsc S
L manpages L)

1 2
[[

To be covered today Documentation
uReferences = _
» Perl’s answer to pointers = Programming Per| (camel book)
. » references shown throughout these notes
= Making references .
. = Advanced Perl Programming
" mUsing references " > Str1iram Srinivasan, O'Reilly & Associates
@ =Nested data structures o chapters 1-2, pages 1-37
0 » multi-dimensional arrays m TManpages
w » emulating C structs w > perlref]
U S - complete but terse explanation of references
> lreftut

= = per
g g — easy tutorial of similar complexity as these notes
m (] > perllol
m m - managing nested data structures (lists of lists)
w w > perldsc
(V) 9] — data structures cookbook, more detail than pert ot

3 4
[[

Scalars References

mScalars can be of three types
» number
» string
» reference
= Only hard references described here
» symbolic (“soft”) references not covered

perlref Manpage

| CSE2395/CSE3395

@Cﬁ’mﬁ pages 58-59; Camel2 pages 38-39

= A reference is a scalar value that refers to
another scalar, array or hash
» or filehandle or functionor . . .

= References are like C pointers
» contain address of referred-to value
» know the type of thing they refer to (scalar, array, . . .)

sBut. ..
» references can never refer to uninitialized memory

» can’t do pointer arithmetic on a reference
» can’t cast a reference to refer to a different type

@CameB pages 242-244; Camel2 pages 244-245
perlref Manpage

| CSE2395/CSE3395

5

6

.

[

Uses of references

Making references

mComplex data structures = |[f you have a variable you want to refer to,
» arrays can contain only scalars, not other arrays prepend a backslash (\) to make a reference
» but a reference to an array is a scalar to that variable
n » arrays can contain references to arrays Ln » like the & (address) operator in C
g » this is how multi-dimensional arrays are done in Perl g » $scalar = 5: $sref = \Sscalar:
m » the above also applies to hashes m .2 7 . s)
w X A w array = (1, 2, 3); $aref = \@array;
a m Passing values to and from functions Y| > xhash = (@ => 1, b => 2); shref = \Zhash;
= » more efficient than passing large data structures =
g » allows passing of parameters by reference m
m » allows passing of multiple arrays or hashes m
H .Objed O'.'Ien.ted prOgrammmg. I'J\'I Camel3 pages 245; Camel2 pages 245-246
U » a Perl object is a (referenced) special type of value (6] @per Lref, perlreftut manpages
7 8
[[

Making references

Making references

=To make a reference to an anonymous array, =To make a reference to an anonymous hash,
put the array elements in square brackets put the hash elements in braces (<3)
(1) » Perl creates a new hash with the given key-value
o » Perl creates a new array with the given values, and L pairs, and returns a reference to it
™M returns a reference to it o » shref = €a => 1, b => 23;
i » saref = [1, 2, 31; W > same as %hash = (a => 1, b => 2); S$href =
7 > same as darray = (1, 2, 3); $aref = \darray; 7 \%hash ; except doesn’t create intermediate variable
v except doesn’t create intermediate variable aarray. v %hash.
g > this doesn’t work: saref = \(1, 2, 3); g
™ %)
w w
7 Camel3 pages 245-246; Camel2 page 246 7 Camel3 pages 246-247; Camel2 pages 246-247
U perlref, perlreftut manpages v perlref, perlreftut manpages
™ ™

Internal implementation

Internal implementation

" Qarray = (1, 2, 3); $aref = \darray;

HENLENIIEN
7

aarray'—_____’|2|| | I ”

$aref

Symbol table

Reference counts for all values are
maintained by Perl; when a reference
count falls to zero, its memory is freed

| CSE2395/CSE3395

u $aref = [1, 2, 371;

HENILIENIIEN

A 7
I:|1|| M | |

$aref '——————*|]| I |

Symbol table

The anonymous array’s reference count is
now only 1, not 2; if $aref goes out of
scope, its reference count will fall to 0

| CSE2395/CSE3395

1

12

| /
Nested data structures Example
=Elements of arrays (anonymous or named) matrix = O; :
. - # Read rows until end of file.
are always scalars (including references) While <oy
> arrays can contain references to arrays {
» @array2d = ¢ [11, 12, 131, [21, 22, 231, # Split up the row by white space.
g [31, 32, 331); m arow = split /\s+/; _ o
™ » sarray2d_ref = [[11, 12, 131, [21, 22, ™ z I:I;I;er: reference to a list containing
m 231, [31, 32, 331 1; m ° rov- i)
& this is how Perl implements two-dimensional arrays g b [his copies the values In @row inte a new
U P ! c # anonymous array; doing $rowref = \adrow
= mSame applies to h|gher dimensions = # instead would result in a subtle bug.
g S | h h m $rowref = [Qdrow 1;
® >ame app les to hashes # Add the row to the matrix.
m m . : : . . .
N » can make arrays of (references to) hashes, etc. N § g::;da;‘;‘t’:‘:x”SE”gr;Etgf’"Ed‘ate variable with
) Camel3 pages 245-246, 268-275; Camel2 pages 257-264) push @matrix, Srowref;
v perllol, perldsc, perlreftut manpages v 3
| |

Using references

Using references

= Can use braces for clarity and groupin
=To access a value referred to by a reference s $CS<refy aiSarer) 7{$h2’ef} grouping

(dereferencing), prepend the appropriate ’ ’

type character (s, a, %) =Can access elements of referenced array or
o » like » (dereference) operator in C L hash using normal rules
™M » sssref (equals scalar) M > ${saref2L01 (equals first value of array: 1)
H > asaref (equals array <1, 2, 3)) H] > s{shref2{"a"} (equals value in hash associated
W » yshref (equals hash (a => 1, b => 2)) 7] with key a": 1))
v) . v » ${sarray2d[013[21 (equals third element of array
5 mUsing the wrong symbol causes a runtime i referred to by first element of aarray2d: 13)
P error ™ » ${${sarray2d ref>[012L21 (Same, using
m > assref (error: ssref refers to scalar, not array) m sarray2d_ref)
7 Camel3 pages 251-252; Camel2 pages 248-249 wn Camel3 pages 252-253; Camel2 pages 249-250
U perlref, perlreftut manpages v perlref, perlreftut manpages

!—\ !—\

Using references

Using references

= To access an element of a referenced array,
place -> between reference and Lindex1
» saref->L01 (equals first element of array: 1)
» this is wrong. sarefL01]
» sarray2dL01->C21 (equals third element of array
referred to by first element of aarray2d: 13)

mTo access a value in a referenced hash, place
-> between reference and <key?
» shref->{"a"2 (equals value in hash associated with
key "a": 1)

@CﬂrﬂeH pages 253-255; Camel2 pages 250-251
perlref, perlreftut manpages

| CSE2395/CSE3395

m This method can be repeated for nested data
structures
» sarray2d ref->L01->C21 (equals element 2 of
array referred to by element O of array referred to by
sarray2d ref: 13)

= Between adjacent C1 or {3 only, can omit ->
» $array2d_ref->L01C21 (remaining -> must stay)

» $sarray2dC01C21 (same, using aarray2d, looks like
normal C two-dimensional array)

perlref, perlreftut Mmanpages

| CSE2395/CSE3395

@C{JmeB pages 253-255; Camel2 pages 250-251, 257-258

17

18

.

[

Example

Example

The 2D array we're working on. # Call this function Llike:
@array2d = ¢ €11, 12, 131, [21, 22, 231, # diff (\afirst, \dsecond)
[31, 32, 331); # It returns a Llist of all elements in afirst
that are not in @second.
Count through every row of the array. sub diff
g for ($rowc = 0; $rowc < darray2d; $rowc++) m <
{
($a, $b) = a_;
m # Count through every column in this row. m rmnz (ala"esult, %sgén);
w for ($colc = 0; $colc < @{$array2dl$rowcll}; w
w $colc++) w # Remember what elements are in a{$bl}.
v ¢ v foreach (a{$b}) { $seen{$ > = 1; 3
g # Apply the function to “_HS element and g # Add each unseen element in @{$a} into dresult.
™M # replace the old val.ue_\.ﬂth the new. M foreach (a{$a}) <
N $array2dl$rowcll$colcl = N push aresult, $ unless $seen{$ 3;
w function($array2dl$rowcl[$colcl) w 3 - -
(%] (%]
(U] 3 (] return dresult;
3 3

Example

Emulating C structures

Reversing a hash with the reverse function
d 't deal with dupli d val « -
B Tomie 5 To tin thie e e ae forence = Perl doesn’t have a special data structure for
to a *list* of matching keys in each value of records (C structS)
the reversed hash. .
wlo.) } } 1n| ®Typically use a (reference to anonymous)
%fruitcol = (banana => "yellow", cherry => "red",
o o> w v line s " & hash to represent a record
m Lemon => "yellow”, lime => "green");)
m : : _ o . m » $teacher = { name => "Debbie", height =>
I'J',I zh'lle (($fruit, $hue) = each %fruitcol) I'J')I 177, pets => ["Tiger", "Fudge" 1 3;
% z Ac_k:ht::]; f;uit to the array associated % = Can now make an array of records
wi is hue. _)
o # This creates the anonymous array if necessary. [N > dpeople = ($teacher, $baker, $doctor);
m push a{$colfruit{$huel}, $fruit; m
w m
7 , . . _ _ wn Camel2 pages 277-279; Camel3 pages 264-265
Z%colfruit contains (red => L["cherry"1, green => ’
i # ["lime™"], yellow => ["banana™, "lemon"1) i @perlref manpage
| |
Dynamic typing Covered today
i mReferences
C < function to det ine t f » Perl’s answer to pointers
m_an use re nction to determine type o u Maki
. aking references
object referred to by a reference "\ gnd o
»ref $not a reference (equals empty string) ’
o > ref ssref (equals string "scALAR") 0 =Using references
m » ref saref (equals string "ARRAY") m > ${$srefl, a{sarefd, %{shrefl
m > ref shref (equals string "HASH") m > $saref->LC1, shref->{2
9 O m=Nested data structures
n i * multi-dimensional arrays
% $ — arrays of references to arrays
m E » emulating C structs
) Camel3 page 773; Camel2 pages 251-252) = anonymous hashes
v perlfunc, perlreftut manpages v

23

24

Going further

= Symbolic (“soft”) references

> $var = "Hello"; $ref="var"; print ${$refl;
» Camel3 pages 263-264; Camel2 pages 254-255
nClosures

» anonymous functions which remember their scope,
an alternative to object orientation

» Camel3 pages 259-263; Camel2 pages 253-254;
Advanced Perl Programming pages 56-64

Next time

m Packages and modules
m Object-oriented Perl

1 llgeading: ing Per| 3rd edition ch 10-12 288
rogramming Per| 3r. ition chapters 10-12, pages -
292, 299-30T, 308-346

g’{osgggrsmning Perl 2nd edition chapter 5, pages 277-301,

Q
@ perlmod, perlobj, perltoot, perlbot manpages

CSE2395/CSE3395 lecture notes copyright
© 2000-2001 Deborah Pickett.
Reproduction of this presentation for
nonprofit study use is permitted. All other
reproduction, including for other
educational courses, must be authorized in
writing by the author.

‘ CSE2395/CSE3395

27

26

