Object-oriented Perl

Programming Perl 3rd edition
gf)‘eépters 10-12, pages 288-292, 299-301, 308-

Programming Perl 2nd edition

chapter 5, pages 277-301, 315-325
perlobjref, perltoot, perlbot,
per lLmod manpages

Last time

= References

= Making references
mUsing references

mNested data structures
» multi-dimensional arrays
» emulating C structs

1

To be covered today

m Packages and modules

mObject-oriented Perl programming
» making objects
» using objects

References

» Programming Perl| (camel book)
» references given throughout lecture notes

» Advanced Perl Programming
» chapters 6-8

Emanpages
» perlmod
- about packages and modules
> perltoot
— Tom’s object-oriented tutorial; simpler introduction to OO

> perlobj
— complete but terse explanation of OO
» perlbot
- Bag of object tricks; some more complex OO stuff
3 4
Packages Modules

m A package is a default namespace for global
variables
> similar to namespace keyword in ANSI/ISO C++
» package parcel;
— all variables are now kept in the package called parcel

u |nitial package is main
mCan refer to variables in other packages

> $parcel::scalar, aparcel::array,
parcel::func()

@Cﬁmﬁ pages 288-292; Camel2 pages 279-281
per lmod Mmanpage

= A module is a package that contains re-
usable code
» If module’s package is weekday, module is stored in
file Weekday.pm

m Access a module with the use keyword
> use Weekday ("weekday");
» includes all code of weekday.pm
» implicitly calls weekday:: import("weekday")

— usually makes main::weekday () equal to
Weekday::weekday ()

@meB pages 299-301; Camel2 pages 285-289
perlmod Manpage

5

6

Object-orientation

m A class is a description of a type of thing
» in Perl, implemented as a module

= An object is an instance of a class
» in Perl, implemented as a referenced value

» A method is a function that operates on a
class or object
» class methods (static methods) apply to the class as
awhole
» object methods apply to one object
> in Perl, both implemented as a subroutine in module

@CameB pages 308-310; Camel2 page 290
perlobj, perltoot Mmanpages

Making an object

= A constructor is a class method that returns a
reference to a new object
» often called new, but not necessarily

m Typically, new object is an anonymous hash

» but can be any type of value, e.g. array

» object’s attributes stored in hash like a struct
mObject must be blessed into class

» bless keyword associates object’s value with class

» can check what class an object is in with ref keyword

@meB pages 317-321; Camel2 pages 290-291
perlobj, perltoot manpages

v

8

Invoking methods

m Perl translates method calls into calls to
functions in the class’ module
» sometimes calls different class if using inheritance
mClass methods: class->cmethod (params)
» class name is added as implicit first parameter
— translated to class::cmethod("Class”, params)
> $person = Student->new($name);

mObject methods: soref->omethod(params)
» object reference is added as implicit first parameter
— translated to class::omethod($oref, params)
> $person->enrol("CSE3395");

@CameB pages 311-313; Camel2 pages 291, 295-297
perlobj, perltoot Mmanpages

Example

package Student;

This is called "new"™ only by convention.

sub new

{
Find out class name (useful if inherited).
my ($class) = shift;
Make a new object, and bless it into the class.
my ($self) = {2;
bless $self, $class;
Initialize the object's attributes
$self->{"ID"} = make new ID number();
$self->{"NAME"} = $_T[01;
$sel f->{"SUBJECTS"} = [1;
Return a reference to the new object.
return $self;

9

10

Example

Destroying an object

package Student;

sub enrol

{
First (implicit) parameter is the object
reference.
my ($self) = shift;
Remaining parameters are the subjects to
add. Add them to the array reference in
$self->{"SUBJECTS"}.
push @8{$self->{"SUBJECTS"}}, a_;

3

= Special method pesTROY () is called when an
object is no longer referenced
» rarely needed because of Perl’s reference-count
memory management
» useful to keep track of class meta-data or to dump
persistent objects to disk

@meB pages 330-331; Camel2 pages 297-298
perlobj, perltoot mManpages

12

Example

package Random;

The new constructor takes one parameter,

the range of numbers to produce.

sub new

{
First (implicit) parameter is the class.
my ($class) = shift;
Get the range, and put it in an anon hash.
my ($range) = $_[01;
my ($self) = { range => $range I};
Bless the reference into the Random package.
bless $self, $class;
return $self;

This class is continued on the next slide.

Example

Continuing in package Random from last slide.

The roll object method returns a random number
from 1 to the object's range, inclusive.
sub roll
{
First C(implicit) parameter is the object.
my ($self) = shift;
Fetch the range from the object.
my ($range) = $self->{rangel;
Return the random number.
return int (rand $range) + 1;

To indicate successful inclusion by the
use keyword, must end this file with truth.

13

14

Example

package main;

Dedicated to all the role players I know. :)
use Random;

Want to generate numbers from 1 to 6 for one
die and from 1 to 10 for the other.

$die1 = Random->new(6);

$die2 = Random->new(10);

Roll both dice 100 times.
for ($i = 0; $i < 100; $i++)
{
Print out the sum of the two dice.
print $diel->roll() + $die2->roll), "\n";
X

Inheritance

= A class can be derived from one or more
parent classes by setting the a1sa array
» package Student; @ISA = ("Person");

» Any method not found in student will now fall back
to the same-named method in Person

@meB page 321-324; Camel2 page 292
perlobj, perltoot manpages

15

16

OO Perl versus C++

= Underlying representation
» Perl: anonymous hash/array/scalar, looked up by
reference
» C++: opaque structure similartoaC struct

mObject methods and class methods
» Perl: equivalent syntax, distinguished by use
» C++: class methods denoted by static keyword

nClass data
» Perl: package-level global variables
» C++: variables defined with static keyword

OO Perl versus C++

= |nstance data
» Perl: stored as key/value in object hash
» C++: stored in opaque structure

mConstructors
» Perl; defined and invoked like other class methods
» C++: defined as cLass function, called using new
keyword

mDestructors
» Perl: defined as pesTroY function in module; invoked
implicitly
» C++: defined as ~class function; invoked implicitly

17

18

OO Perl versus C++

A language feature comparison, continued

m [nheritance
» Perl: multiple, using a1sa array
» C++: multiple, using :public Base in class
declaration
= Polymorphism
» Perl: applies to all methods, no need to distinguish
» C++: off unless activated with virtuat keyword

Covered today

m Packages and modules
» package keyword

mObject-oriented Perl programming
» making objects
- bless function
» using objects
— $obj->method () notation

m Access control n
» Perl: none, relies on programmer’s manners g;
» C++: rigorously enforced with public, private, m
protected keywords (u/.'i
v
19 20
- ’—‘ -
Going further Advanced topics
More things related to today’s topic [More of what Perl can do
= Symbol tables = Networking
» how Perl stores its data internally » client/server programming, sockets, DNS, etc.
» Camel3 pages 293-296; Camel2 pages 281-283 s Tying variables
u AUtO|OaC|in”9 ; hefi » invisibly attaching a class/file/database to a variable
» automatically generating functions on the fly IGraphicaI user interfaces
;ﬂcfjmilg pages 296-298; Camel2 pages 284-285 » using the Tk/Perl windowing interface
| | .
odules = Code generation
» writing reusable code N ti d evaluating Perl cod the fl
» Camel3 pages 301-307 generating and evaluating Perl code on the fly
m Interfacing Perl and C
» taking advantage of both languages’ strengths
21 2
Advanced topics CSE2395/CSE3395 lecture notes copyright
— © 2000-2001 Deborah Pickett.
Finding out more about Perl Reproduction of this presentation for
= Programming Per| nonprofit study use is permitted. All other
» covers most aspects of Perl, including standard library, reproduction, including for other _
tying objects to variables, etc. educational courses, must be authorized in
» Advanced Per| Programming | Writing by the author.
» Sriram Srinivasan, O’Reilly 1997 o
» covers advanced topics, including details on references, m
object orientation, networking, graphical user m
interfaces, writing libraries, embedding Perl in C and 7
vice versa, etc. v
= Per| Cookbook o
» Tom Christiansen & Nathan Torkington, O’Reilly 1998 m
» lots of neat solutions to lots of common Perl problems w
mmanpages g

23

24

