

Programming In Windows

By Minh Nguyen

 2

Table of Contents
**

Overview..……………………………………3
Windows Programming Setup………………………………………..3
Sample Skeleton Program…………………………………………….3

In Depth Look At A Basic Program…….………6
Hungarian Notation…………………………………………………...6
The WinMain Function……………………………………………….6
The Event Handler………………………………………….……….10

Windows Programming Basics………………….13
Graphics……………………………………………………………..13
Keyboard Input.……………………………………………………..19
Mouse Input…………………………………………………………23
Displaying Text……………………………………………………...25
Message box…………………………………………………………26

Systems Basic………………………………29
System Metrics………………………………………………………29
Full Screen Apps………………………….…………………………31
Sending Messages…………………………………………………...31

Using Resources………………………….…33
Icon…………………………………………………………………33
Cursor………………………………………………………………35
Sounds……………………………………………………………...37

Conclusion………………………………….39

 3

Overview

Programming in windows seems very difficult because windows provides you with lots
of functions that you can use. This text is designed only for understanding the very
basics of windows programming and is not intended to cover advance topics.
Furthermore, this text will provide many tables and look-up charts that will provide a
good reference place when programming. Thus many concepts will be omitted or will
only be explained briefly.

Windows Programming Setup

In order to create a windows application, you must create a Win32 program. Make sure
that you choose GUI target mode instead of the console target mode. All windows
program requires windows.h so make sure you include that. Having windowsx.h is also
a good idea because this file contains other commonly used functions and macros. For
now, take out the .RC file and the .DEF file if they were created. It is also a good idea to
include this statement in the code as well.

Sample Skeleton Program

//Defines
#define WIN32_LEAN_AND_MEAN //Ensures that unnecessary code are taken out of windows.h

//Include files
#include <windows.h>

//Defines global strings
#define WINDOW_CLASS_NAME "WINCLASS1"

//Globals handles
HWND main_window_handle = NULL;
HINSTANCE hinstance_app = NULL;

//Processing function of messages
LRESULT CALLBACK WindowProc(HWND hwnd, UINT msg, WPARAM wparam, LPARAM lparam)
{
 PAINTSTRUCT ps;
 HDC hdc;
 switch(msg) //Carries out messages that windows automatically calls
 {
 case WM_CREATE:
 return(0);
 break;
 case WM_PAINT:
 hdc = BeginPaint(hwnd,&ps);
 EndPaint(hwnd,&ps);
 return(0);
 break;
 case WM_DESTROY:
 PostQuitMessage(0);
 return(0);
 break;
 default:
 break;
 }
 return(DefWindowProc(hwnd, msg, wparam, lparam));
}

 4

//The main function for windows
int WINAPI WinMain(HINSTANCE hinstance, HINSTANCE hprevinstance, LPSTR lpcmdline, int ncmdshow)
{
 HWND hwnd; //Handle to windows
 HDC hdc; //Handle to device context
 WNDCLASSEX winclass; //Window class type
 MSG msg; //Holds messages

 //Define window class attributes
 winclass.cbSize = sizeof(WNDCLASSEX);
 winclass.style = CS_DBLCLKS | CS_OWNDC | CS_HREDRAW | CS_VREDRAW;
 winclass.lpfnWndProc = WindowProc;
 winclass.cbClsExtra = 0;
 winclass.cbWndExtra = 0;
 winclass.hInstance = hinstance;
 winclass.hIcon = LoadIcon(hinstance, IDI_APPLICATION);
 winclass.hCursor = LoadCursor(hinstance, IDC_ARROW);
 winclass.hbrBackground = (HBRUSH)GetStockObject(WHITE_BRUSH);
 winclass.lpszMenuName = NULL;
 winclass.lpszClassName = WINDOW_CLASS_NAME;
 winclass.hIconSm = LoadIcon(hinstance, IDI_APPLICATION);

 hinstance_app = hinstance; //Make a duplicate global variable

 if(!RegisterClassEx(&winclass)) //Register the window class
 return(0);

 //Create a window

if(!(hwnd = CreateWindowEx(NULL,
 WINDOW_CLASS_NAME, "Graphics App",
 WS_OVERLAPPEDWINDOW | WS_VISIBLE,
 0, 0,
 800, 600,
 NULL,
 NULL,
 hinstance,

NULL)))
 return(0);

 main_window_handle = hwnd; //Make a duplicate global variable

 hdc = GetDC(hwnd); //Get a device context

 //Loop statement
 while(TRUE)
 {
 if(PeekMessage(&msg,NULL,0,0,PM_REMOVE))
 {
 if(msg.message == WM_QUIT)
 break;
 TranslateMessage(&msg);

 DispatchMessage(&msg);
 }
 //Place where programming logic is done
 }

 ReleaseDC(hwnd,hdc); //Release the device context

return(msg.wParam);
}

That's about it to creating a very simple application. It probably seems complicated for a
program that does nothing, but this program will be the core of most windows programs.
See if you can understand the code with the comments that have been provided. In the

 5

next section, I will briefly explain what some of the stuff means. If you want, you can
just skip that section and move on to using graphics.

 6

In Depth Look At A Basic Program

Okay, the previous code probably will not make sense to a lot of programmers familiar to
Dos programming. Most of the programs that you have written, you have been using the
main() function. In windows, the main() function has been replaced with the
WinMain() function. Let's take a look at the function to see what each part does.

Hungarian Notation

Before proceeding, you should understand the notation used in windows programming.
Hungarian notation is the conventional system of naming variables in such a way that
programmers could tell what the type of the variable is.

Table 2-1 Hungarian Notation
Common Prefixes Data types
h handle
c char
lp 32-bit pointer
i int
s string
p pointer
msg message
w WORD or UINT
dw DWORD
l long
by BYTE or UCHAR
fn function pointer
b BOOL

The WinMain Function

int WINAPI WinMain(HINSTANCE hinstance, HINSTANCE hprevinstance,
 LPSTR lpcmdline, int ncmdshow)

The WINAPI (synonymous with APIENTRY, PASCAL) keyword specify the calling
convention of the WinMain() function. In standard programming, the default calling
convention passes the parameters from right to left. Such calling sequence is used with
most standard C and C++ functions. With the WINAPI calling convention, the compiler
forces the parameters to be passed from left to right. The differences in the calling
sequences lie in the fact that parameters are passed onto a stack. With the right to left
calling sequence, allows the function to accept a variable number of parameters. Thus
the function cannot clean up the parameters passed to it on the stack because the
parameter list can vary. With the left to right calling sequence, the compiler can remove
the parameters from the stack easier because it knows during compile time the numbers
of variables that a function is expected to accept.

 7

The parameter list includes four parameters, which contain the handle to the instance of
the application, the handle to the previous instance of the application (obsolete), the
pointer to the string containing the command lines (if you were using the Run command),
and an integer that sets how the application should open the main window respectively.

A handle is a unique token or code that identifies an object in windows. A handle is
pretty much an integer that is used to distinguish among different objects.

An instance of something is a particular of that thing. In this sense, it refers to a copy of
the application. When you run a program, windows create an instance of that application.
Opening the program again when the program is still running, windows will create
another instance of that application.

HWND hwnd; //Handle to windows
HDC hdc; //Handle to device context
WNDCLASSEX winclass; //Window class type
MSG msg; //Holds messages

A device context (display context) is the link between the application, the device driver,
and the output device like a printer or plotter. In most cases, think of it as a display
surface for the window to write things on.

Programming in windows involves sending messages. This is how windows
communicate to applications that are running. Messages tell the applications what tasks
to do and when to do them. Clicking the mouse, resizing an application, pressing a key,
and etc. are all types of actions that involves windows to send specific messages to the
application to perform desired tasks.

A window class is a template for creating windows that are of members of the class. It
contains the common attributes of all windows created based on the class.

 winclass.cbSize = sizeof(WNDCLASSEX);
 winclass.style = CS_DBLCLKS | CS_OWNDC | CS_HREDRAW | CS_VREDRAW;
 winclass.lpfnWndProc = WindowProc;
 winclass.cbClsExtra = 0;
 winclass.cbWndExtra = 0;
 winclass.hInstance = hinstance;
 winclass.hIcon = LoadIcon(hinstance, IDI_APPLICATION);
 winclass.hCursor = LoadCursor(hinstance, IDC_ARROW);
 winclass.hbrBackground = (HBRUSH)GetStockObject(WHITE_BRUSH);
 winclass.lpszMenuName = NULL;
 winclass.lpszClassName = WINDOW_CLASS_NAME;
 winclass.hIconSm = LoadIcon(hinstance, IDI_APPLICATION);

These statements initialize the window class attributes. Note that it is a struct data
structure and not a class data structure. This is beneficial because the member data are
all public, and therefore, it is easier to set. The structure of the window class follows.

 8

Note: There are many standards that go against what is taught in a professional computer
course. For example, the use of global variables are considered bad programming
because the scope of the variables will allow easy altering of the variables and this can
cause many side effects. Instead, variables should be passed as parameters to reduce side
effects. While the reasons are true, global variables are often used in programming
because of speed. There is a time penalty for passing parameters because of the function
overhead. Encapsulation is another example. Reliability and ease of updating the code is
one thing, but speed and use of memory is more important in real world programming.
Object oriented programming is a very cool concept, and many programs do use that
style of programming for readability, ease of updating, and reliability. However, in real
life programming, it is too slow and consumes memory that could be used for other stuff.

typedef struct _WNDCLASSEX {
 UINT style; //Specifies the class type
 WNDPROC lpfnWndProc; //Points to the window procedure
 int cbClsExtra; //Specifies # of extra bytes to allocate win class structure
 int cbWndExtra; // Specifies # of extra bytes to allocate window instance
 HANDLE hInstance; //Handle to instance
 HICON hIcon; //Handle to icon
 HCURSOR hCursor; //Handle to cursor
 HBRUSH hbrBackground; //Handle to background brush
 LPCTSTR lpszMenuName; //Handle to resource name of the class menu
 LPCTSTR lpszClassName; //Specifies the class name
 HICON hIconSm; //Handle to the small icon associated with the class
} WNDCLASSEX;

Compare this structure declaration with the way it is set.

These are some of the different windows class styles.

Table 2-2 Windows Class Styles
Style Action
CS_DBLCLKS Allows double clicks
CS_HREDRAW Redraw if there is a change in width
CS_OWNDC Allows unique device context for each windows
CS_VREDRAW Redraw if there is a change in height

To combine the styles, we must use the bitwise or operator (|).

Now that we have define the WNDCLASS and initialize all of the attributes, we must
register it to windows and then we can initialize a window instance. Registering the
window class lets Windows know about the class and enables us to create windows with
the class using only the name of the class.

hinstance_app = hinstance; //Make a duplicate global variable
if(!RegisterClassEx(&winclass)) //Register the window class

 return(0);
 //Create a window

 9

if(!(hwnd = CreateWindowEx(NULL,
 WINDOW_CLASS_NAME, "Graphics App",
 WS_OVERLAPPEDWINDOW | WS_VISIBLE,
 0, 0,
 800, 600,
 NULL,
 NULL,
 hinstance,

NULL)))
 return(0);
 main_window_handle = hwnd; //Make a duplicate global variable
 hdc = GetDC(hwnd); //Get a device context

Here is the parameter list and a short explanation of each argument of the
CreateWindowEx() function:

HWND CreateWindowEx(
 DWORD dwExStyle, // extended window style
 LPCTSTR lpszClassName, // address of registered class name
 LPCTSTR lpszWindowName, // address of window name

 DWORD dwStyle, // window style
 int x, // horizontal position of window
 int y, // vertical position of window
 int nWidth, // window width
 int nHeight, // window height
 HWND hwndParent, // handle of parent or owner window
 HMENU hmenu, // handle of menu, or child-window identifier
 HINSTANCE hinst, // handle of application instance
 LPVOID lpvParam // address of window-creation data
);

These are some of the different window styles.

Table 2-2-2 Windows Styles
Style Action
WS_ OVERLAPPED A window with title bar and border
WS_ POPUP Has no controls built
WS_VISIBLE Specifies that the window is initially
 visible
WS_OVERLAPPEDWINDOW A window with title bar, border, and
 control

Note: To combine the styles, we must use the bitwise or operator (|).

Note: All the registering part have error checking (return(0) breaks out of the function).
This is to ensure the program will stop if something is wrong.

Now we need a message loop to handle events. All it is a loop that retrieves messages
sent by windows in the messages queue, translates the messages, and then dispatches the

 10

messages to the event handler. There are two conventional ways of doing this loop, but I
have included a way that does not cause a delay when there are no messages.

//Loop statement
 while(TRUE)
 {
 if(PeekMessage(&msg,NULL,0,0,PM_REMOVE))
 {
 if(msg.message == WM_QUIT)
 break;
 TranslateMessage(&msg);

 DispatchMessage(&msg);
 }

//Actual coding section
 }

The section after the if statement is where you would do all the work (writing the actual
logic implementation/code). Programming this way is different than DOS programming
because you must share the resources. That is after you have done the logic, you must
give up the control of the program to Windows in order for Windows to take care of its
managements. When Windows is not processing messages, the program is able to
perform its actions such as the logic.

Now to end the main loop, you need to release the device context that you have captured.
After that, you will return to Windows with the return statement.

 ReleaseDC(hwnd,hdc); //Release the device context
 return(msg.wParam);

Finally, we are done with the WinMain() function. Now we need to take a look at the
event handler. The event handler is a function you must write to handle windows
messages that you want to deal with.

The Event Handler

This is the function you must write to handle all window messages that you want.
Windows will send the application lots of messages, but you can choose which ones you
want to work with. Messages that are not handled by your application will be sent to the
DefWindowProc() where it will be processed.

 LRESULT CALLBACK WindowProc(HWND hwnd, UINT msg, WPARAM wparam,

 LPARAM lparam)

First, LRESULT is just a 32-bit integer that is returned by this function. It is used
specifically for messages processing functions. CALLBACK functions are functions
that you write but do not call yourself. Windows call this function when an event occurs.

 11

Remember that events occur when the user makes actions such as moving the mouse,
resizing the window, pressing a key, and etc. Events can also be other messages that
Windows send to the application when it is created, destroyed, hidden, and etc. The
hwnd is the handle to the window, msg is the message, wparam and lparam are more
info on the message. Different messages carry different extra info.

PAINTSTRUCT ps;
HDC hdc;
switch(msg) //Carries out messages that windows automatically calls
{
 case WM_CREATE:
 return(0);
 break;
 case WM_PAINT:
 hdc = BeginPaint(hwnd,&ps);
 EndPaint(hwnd,&ps);
 return(0);
 break;
 case WM_DESTROY:
 PostQuitMessage(0);
 return(0);
 break;
 default:
 break;
}

The window messages, WM_CREATE, WM_PAINT, WM_DESTROY, are the basic
window messages. WM_CREATE is sent when the application is first started.
WM_PAINT is sent when the application is activated after it has been covered by another
application. WM_DESTROY is sent when the application is being closed.

Simple enough, these are the messages that Windows send to the program to see if it
needs repainting, initializing, or cleaning up. To check for other messages, all you have
to do is add in other cases in the switch statement. You can also do ifs statements but it is
neater this way. Here are the most commonly used messages.

Table 2-3 Messages
Most Common Messages Sent When
WM_ACTIVATE Activated
WM_CLOSE Closed
WM_CREATE First created
WM_PAINT Window needs redrawing
WM_DESTROY The window is to be destroyed
WM_KEYDOWN A key has been pressed
WM_KEYUP A key has been released
WM_MOVE The window moves
WM_MOUSEMOVE The mouse moves
WM_SIZE The window is resized

 12

Finally, last part:

return(DefWindowProc(hwnd, msg, wparam, lparam));

The return function will make a call DefWindowProc() to resolve messages that was not
handled. And we are done with examining the skeleton program. Next section will cover
the basics of using graphics.

 13

Windows Programming Basics

Now that you have an understanding of the skeleton program, you can use this structure
to create other window programs. Just use the core program as the backbone of any
program that you write. Your initialization code should be written before the main event
loop and your cleaning up code should be written after the main event loop. In your main
event loop is where you should write your programming logic.

Graphics

When using graphics, you must have a device context set. Recall that a device context)
is the link between the application, the device driver, and the output device. You set it up
as follow:

 HDC hdc;
 hdc = GetDC(hwnd);

This gets a handle to the device context for the window area of the current window. The
device context can then be used to allow other GDI functions to draw in the client area.
After you are finished with a device context, you must release it using the following
function.

 ReleaseDC(hwnd, hdc);

Sounds simple? Good. Now, in order to start drawing, you need to know a few things.

A pen is an object used to draw an outline of objects like a line, the border of a rectangle.
A brush is an object used to fill the interior of objects like drawing a filled rectangle.

To define them, we create handles to those objects.

 HPEN pen;
 HBRUSH brush;

What we have now are two handles. One points to a pen and one points to a brush. Both
do not exist, however. Now we must assign the handles to valid pens and brushes.

We can use predefine pens and brushes like so:

 pen = (HPEN)GetStockObject(WHITE_PEN);
 brush = (HBRUSH)GetStockObject(WHITE_BRUSH);

Then, we must select them into a device context like so:

 SelectObject(hdc, pen);
 SelectObject(hdc, brush);

 14

However, there are not a lot of choices of standard pens and brush to choose from.

Table 3-1 Standard Objects
Value Meaning
BLACK_BRUSH Black brush
DKGRAY_BRUSH Dark gray brush
GRAY_BRUSH Gray brush
HOLLOW_BRUSH Hollow brush
LTGRAY_BRUSH Light gray brush
NULL_BRUSH Null brush (HOLLOW_BRUSH)
WHITE_BRUSH White brush
BLACK_PEN Black pen
NULL_PEN Null pen
WHITE_PEN White pen

To create your own custom pen you must use the CreatePen() function.

Here is the CreatePen() function prototype:

HPEN CreatePen(
 int fnPenStyle, // pen style
 int nWidth, // pen width
 COLORREF crColor // pen color
);

You can use this function as follow, provided that you provide a color type. Don’t worry
about that right now. Here is how the function call would work.

 pen = CreatePen(PS_SOLID, 1, COLOR);

Table 3-1-2 Basic Pen Styles
Style Description
PS_SOLID Pen is solid
PS_DASH Pen is dashed
PS_DOT Pen is dotted
PS_DASHDOT Pen is dashed, dotted…
PS_DASHDOTDOT Pen is dashed, dotted, dotted…
PS_NULL Pen is invisible

There is also another way to create a logical pen using CreatePenIndirect() function but
don’t worry about it. Let's move on to creating brushes.

Here is the function prototype for creating a solid brush. All you have to do is specify the
color.

HBRUSH CreateSolidBrush(
 COLORREF crColor); // brush color value

 15

There are other types of brushes too, but to use them, you must define a logical brush,
which I won't go into now. This is by far, the simplest type of brush you can make. Here
is how the function call would work.

 brush = CreateSolidBrush(COLOR);

Remember, we must select them into a device context to use them:

 SelectObject(hdc, pen);
 SelectObject(hdc, brush);

This is the SelectObject() function prototype:

HGDIOBJ SelectObject(
 HDC hdc, // handle of device context
 HGDIOBJ hgdiobj // handle of object
);

The return type is the old object. Thus, if you want to save the old pen or brush, you
should assign it to the function. That way you can reselect the original after you are
done.

After you have used a pen or a brush to draw shapes or objects, you must be sure to
delete the pen or brush because they waste memory. Thus, when an application no longer
requires a given pen or brush, it should call the DeleteObject() function to delete the pen
from the device context. This is really important because it will cause memory errors
when you run the program.

 DeleteObject(pen);
 DeleteObject(brush);

Now, let us move on to colors. Colors are defined using COLORREF data type. You
define one as follows:

 COLORREF color;

To set a color, you can manually shift in the red, green, and blue bits or you can use the
RGB() macro like so:

 color = RGB(RED,GREEN,BLUE);

RED, GREEN, and BLUE have the value range from 0 to 255.

Note: There is another way to specify colors. You can use palettes but this text will not
cover that. Using RGB is much easier.

 16

Finally, you are ready to draw. All you need now is the functions to draw simple objects
such as a pixel, line, ellipses, and rectangles.

First, I'll show you how to draw a pixel. A pixel is just a small dot on the screen so it will
not need a pen or a brush to be defined.

COLORREF SetPixel(
 HDC hdc, // handle of device context
 int X, // x-coordinate of pixel
 int Y, // y-coordinate of pixel
 COLORREF crColor // pixel color
);

The return type is the color that you have chosen. This should be the same as the pixel
color. However, this may differ if the exact color cannot be found. This should provide
enough information for you to call the function. Here how if you don't know.
Remember, you should be able to figure it out from now on.

 SetPixel(hdc, x, y, color);

Here is the prototype for function to draw a line. Note this requires only a pen.

BOOL MoveToEx(
 HDC hdc, // handle of device context
 int X, // x-coordinate of new current position
 int Y, // y-coordinate of new current position
 LPPOINT lpPoint // address of old current position
);

BOOL LineTo(
 HDC hdc, // device context handle
 int nXEnd, // x-coordinate of line's ending point
 int nYEnd // y-coordinate of line's ending point
);

The MoveToEx() function is simple enough. It will move to a coordinate, without
actually drawing. The address of the old position is optional. If you choose not to store
the old position, set the lpPoint parameter to NULL. If you use it, the function will store
the old position in the variable.

Here is the point structure:

typedef struct _POINT {
 LONG x;
 LONG y;
} POINT;

 17

The LineTo() function will draw a line from the starting coordinate to the new one
specified.

Now here are the function prototypes for the other objects.

BOOL Rectangle(
 HDC hdc, // handle of device context
 int nLeftRect, // x-coord. of bounding rect. upper-left corner
 int nTopRect, // y-coord. of bounding rect. upper-left corner
 int nRightRect, // x-coord. of bounding rect. lower-right corner
 int nBottomRect // y-coord. of bounding rect. lower-right corner
);

BOOL RoundRect(
 HDC hdc, // handle of device context
 int nLeftRect, // x-coord. of bounding rect. upper-left corner
 int nTopRect, // y-coord. of bounding rect. upper-left corner
 int nRightRect, // x-coord. of bounding rect. lower-right corner
 int nBottomRect, // y-coord. of bounding rect. lower-right corner
 int nWidth, // width of ellipse used to draw rounded corners
 int nHeight // height of ellipse used to draw rounded corners
);

BOOL Ellipse(
 HDC hdc, // handle of device context
 int nLeftRect, // x-coord. of upper-left corner of bounding rect.
 int nTopRect, // y-coord. of upper-left corner of bounding rect.
 int nRightRect, // x-coord. of lower-right corner of bounding rect.
 int nBottomRect // y-coord. of lower-right corner of bounding rect.
);

BOOL Chord(
 HDC hdc, // handle of device context
 int nLeftRect, // x-coordinate of the upper-left corner of the bounding

// rectangle
 int nTopRect, // y-coordinate of the upper-left corner of the bounding

// rectangle
 int nRightRect, // x-coordinate of the lower-right corner of the bounding

// rectangle
 int nBottomRect, // y-coordinate of the lower-right corner of the bounding

// rectangle
 int nXRadial1, // x-coordinate of the first radial's endpoint
 int nYRadial1, // y-coordinate of the first radial's endpoint
 int nXRadial2, // x-coordinate of the second radial's endpoint
 int nYRadial2 // y-coordinate of the second radial's endpoint
);

Here are other commonly used functions. It will be listed so that you can use to draw
other shapes.

 18

int FillRect(
 HDC hdc, // handle of device context
 CONST RECT *lprc, // address of structure with rectangle
 HBRUSH hbr // handle of brush
);

int FrameRect(
 HDC hdc, // handle of device context
 CONST RECT *lprc, // address of rectangle coordinates
 HBRUSH hbr // handle of brush
);

BOOL Pie(
 HDC hdc, // handle of device context
 int nLeftRect, // x-coord. of bounding rect. upper-left corner
 int nTopRect, // y-coord. of bounding rect. upper-left corner
 int nRightRect, // x-coord. of bounding rect. lower-right corner
 int nBottomRect, // y-coord. of bounding rect. lower-right corner
 int nXRadial1, // x-coord. of first radial's endpoint
 int nYRadial1, // y-coord. of first radial's endpoint
 int nXRadial2, // x-coord. of second radial's endpoint
 int nYRadial2 // y-coord. of second radial's endpoint
);

BOOL AngleArc(
 HDC hdc, // handle of device context
 int X, // x-coordinate of circle's center
 int Y, // y-coordinate of circle's center
 DWORD dwRadius, // circle's radius
 FLOAT eStartAngle, // arc's start angle
 FLOAT eSweepAngle // arc's sweep angle
);

BOOL Arc(
 HDC hdc, // handle of device context
 int nLeftRect, // x-coordinate of upper-left corner of bounding

// rectangle
 int nTopRect, // y-coordinate of upper-left corner of bounding

// rectangle
 int nRightRect, // x-coordinate of lower-right corner of bounding

// rectangle
 int nBottomRect, // y-coordinate of lower-right corner of bounding

// rectangle
 int nXStartArc, // first radial ending point
 int nYStartArc, // first radial ending point
 int nXEndArc, // second radial ending point
 int nYEndArc // second radial ending point
);

 19

These are the basic objects that are commonly used to draw in the window area. That’s
pretty much all there is to using graphics. There are a few more functions that windows
provide for you, but right now these basic ones will suffice.

Keyboard Input

Using the keyboard is very easy. There are a few ways to check to see whether or not a
key has been pressed. The simplest method is to check for keyboard messages.

The two messages that we can check for in the message queue includes:
WM_KEYDOWN, and WM_KEYUP.

Windows provides us the code for each keys pressed also known as a virtual-key code
value in the wParam of the WM_KEYDOWN and WM_KEYUP messages. These things
are device independent meaning it doesn't not use the hardware-dependent scan code to
identify which keys are pressed. Here is a list of the virtual key code list:

Table 3-2 Represented Virtual Key Code
Symbolic Name Description
VK_LBUTTON Left mouse button
VK_RBUTTON Right mouse button
VK_MBUTTON Middle mouse button
VK_CANCEL Control-break
VK_BACK Backspace key
VK_TAB Tab key
VK_CLEAR #5 on numpad with num lock off
VK_RETURN Enter key
VK_SHIFT Shift key
VK_CONTROL Control key
VK_MENU Alt key
VK_PAUSE Pause key
VK_CAPITAL Caps lock
VK_ESCAPE Escape key
VK_SPACE Space bar
VK_PRIOR Page up
VK_NEXT Page down
VK_END End key
VK_HOME Home key
VK_LEFT Left arrow
VK_UP Up arrow
VK_RIGHT Right arrow
VK_DOWN Down arrow
VK_SNAPSHOT Print screen
VK_INSERT Insert
VK_DELETE Delete

 20

These are other virtual key codes used for keyboard input. Since the symbolic name is
not identified, we can use the hex notation, the decimal equivalence, or the character
notation as well.

Here I have listed other virtual key codes using the character notation:

Table 3-2-2 Represented Virtual Key Code
Key Virtual Code (Not implemented) Description
'0' VK_0 0 key
'1' VK_1 1 key
'2' VK_2 2 key
'3' VK_3 3 key
'4' VK_4 4 key
'5' VK_5 5 key
'6' VK_6 6 key
'7' VK_7 7 key
'8' VK_8 8 key
'9' VK_9 9 key
'A' VK_A A key
'B' VK_B B key
'C' VK_C C key
'D' VK_D D key
'E' VK_E E key
'F' VK_F F key
'G' VK_G G key
'H' VK_H H key
'I' VK_I I key
'J' VK_J J key
'K' VK_K K key
'L' VK_L L key
'M' VK_M M key
'N' VK_N N key
'O' VK_O O key
'P' VK_P P key
'Q' VK_Q Q key
'R' VK_R R key
'S' VK_S S key
'T' VK_T T key
'U' VK_U U key
'V' VK_V V key
'W' VK_W W key
'X' VK_X X key
'Y' VK_Y Y key
'Z' VK_Z Z key

Remember that these keys do not have those virtual keys implemented.

 21

Note: The virtual-key codes do not check for lowercase letter. In order to do so you can
check the state of the shift key or the caps lock key while the key is pressed. More on
checking later.

More virtual-key codes that are defined in WINDOWS.H:

Table 3-2-3 Represented Virtual Key Code
Symbolic Name Description
VK_NUMPAD0 Num lock on #0
VK_NUMPAD1 Num lock on #1
VK_NUMPAD2 Num lock on #2
VK_NUMPAD3 Num lock on #3
VK_NUMPAD4 Num lock on #4
VK_NUMPAD5 Num lock on #5
VK_NUMPAD6 Num lock on #6
VK_NUMPAD7 Num lock on #7
VK_NUMPAD8 Num lock on #8
VK_NUMPAD9 Num lock on #9
VK_MULTIPLY Multiply key
VK_ADD Add key
VK_SUBSTRACT Subtract key
VK_DECIMAL Decimal key
VK_DIVIDE Divide key
VK_F1 F1 key
VK_F2 F2 key
VK_F3 F3 key
VK_F4 F4 key
VK_F5 F5 key
VK_F6 F6 key
VK_F7 F7 key
VK_F8 F8 key
VK_F9 F9 key
VK_F10 F10 key
VK_F11 F11 key
VK_F12 F12 key
VK_NUMLOCK Num Lock key

These are the most basic keys used in most application. Thus I will not show u how to
use special characters for inputting. This is more than enough to work with keyboard
input. As a general rule, you can always use the character notation of each special
character to check for the key pressed.

Now that you know the keyboard virtual-key code, it's time you know how to use them in
checking.

 22

First you must add the case WM_KEYDOWN: in your message handle switch
statement. Then you must typecast the wparam parameter values to int in order to check
the message info with the virtual-key code.

Here is an example:

//All of this should be in the switch msg structure that we have created
case WM_KEYDOWN:

if((int)wparam == VK_ESCAPE) //Typecast wparam and compare
 ; //Do action here
 if((int)wparam == VK_PAUSE) //Typecast wparam and compare

; Do action here

If you want to check for when a key is up you would use the WM_KEYUP window
message.

Supposed we do not want to check the key states inside our message handle function
using messages. We need to use another approach.

The second way to check for a key pressed is to use GetKeyState() function. This is
especially useful for determining the state of the shift, control, num lock, and caps lock
keys. Here is how you would use this function.

int keystate; //int type

//Check for the state of the key
//The high order bit is 1 when key is down, 0 if up
keystate = GetKeyState(VK_SHIFT);

So how do we check the value of the high order bit? We can check by using the bitwise
and operator (&). Thus:

 BOOL state;
 state = (GetKeyState(VK_SHIFT) & 0x8000);

The GetKeyState() function returns the state of the virtual key as it was at the time the
last message was retrieved by the GetMessage() function. This means that the key state
retrieved doesn't necessary have to be the state of the key at the current time. Therefore
windows have another function we can use, the GetAsyncKeyState() function.

Note: The GetAsyncKeyState() function as well as the GetKeyState() function will
return a value that will signify if the virtual key is currently down or up. The high-order
bit will determine that. If it is a 1 then the key is currently up. If it is a 0 then the key is
currently down. By checking the return value's low-order bit we can determine if the key
was toggled. If it is a 1 then the key was toggled. If it is a 0 then the key was not
toggled.

 23

Note: To check the high-order bit (0x8000) you must use the bitwise and (&) plus the
high order bit. The same is true for the low-order bit (0x0000).
Windows can also let us check the whole state of the keyboard. However, such an
approach will not be covered here.

Now we are done. Well, almost. Using the checking method every time we need to
check a key can be long and hard to read. Thus we should define a macro to do this for
us. Here are two macros that will return the state of the keys. A return value of 1 means
the function is true and false otherwise.

#define KEYDWN(vk_code) ((GetAsyncKeyState(vk_code) & 0x8000) ? 1 : 0)
#define KEYUP(vk_code) ((GetAsyncKeyState(vk_code) & 0x8000) ? 0 : 1)

Note: Macros should be on one line only.

Now, all we need to do is use these macros to determine the key state of any key we
wish. Remember to place these macros at the beginning of your program before using
them. Just in case you would use them like so:

 if(KEYDWN(VK_SHIFT))
 ; //Action
 if(KEYUP(VK_SHIFT))
 ; //Action

Now we are officially done with the keyboard input section. Let's move on to using
mouse input.

Mouse Input

Mouse input is pretty simple. It arrives in the form of messages, just like keyboard input.
There is a lot of mouse messages you can process in your event handler but you only
need to worry about a few commonly used ones. Well here are the messages:

Table 3-3 Messages
Most Common Messages Sent When
WM_LBUTTONDOWN Left button pressed
WM_LBUTTONUP Left button released
WM_LBUTTONDBLCLK Left button double-clicked
WM_RBUTTONDOWN Right button pressed
WM_RBUTTONUP Right button released
WM_RBUTTONDBLCLK Right button double-clicked
WM_MOUSEMOVE The mouse moves

Mouse messages, unlike keyboard messages can be lost. This is due to the mouse
hardware, the rate that Windows receives and processes the messages, and the rate at
which the mouse is moving.

 24

Note: Since mouse messages can be lost be clicking in one window and releasing it in
another, it is probably a good idea to make the window the size of the whole screen. This
way you do not need process those types of messages.

Note: Using WM_RBUTTONDBLCLK and WM_LBUTTONDBLCLK require having
CS_DBLCLKS style define in your winclass (see window class styles attributes). If this
is not included, double click messages are interpreted as pressing the button down.

Now we should learn how to process those messages. First let's begin by finding the
position of the mouse at the time when a message is generated.

Before we begin, let's review the point structure.

typedef struct _POINT {
 LONG x;
 LONG y;
} POINT;

Mouse messages return the lparam that holds the cursor position. In order to extract that
information we can use the MAKEPOINT() macro. Thus we can use these like so:

 POINT pt; //POINT structure
 pt = MAKEPOINT(lparam); //Macro to convert the lparam value into a point

Of course you can always do it by typecasting the lparam to HIWORD and LOWORD
to extract the information.

 POINT pt; //POINT structure
 pt.x = HIWORD (lparam);
 pt.y = LOWORD (lparam);

Simple enough. Now let's move on to processing mouse inputs while pressing other
modifiers. These include holding down other mouse keys, the shift key, or the control
key. These keys are stored in the wparam parameter.

Table 3-3-2 Messages
Mouse key values Description
MK_CONTROL Control key is down
MK_LBUTTON Left button is down
MK_MBUTTON Middle button is down
MK_RBUTTON Right button is down
MK_SHIFT Shift key is down

Note: Checking these things are confusing. It is best to use the bitwise and operator (&)
with each of the ones necessary using a nested loop. Bitwise operators can be confusing
to use so you must be extremely careful. They sort of do not work in the same way as

 25

logical operators. There will be an example later to show you how to use multiple
conditions checking.

Double clicks messages are kind of confusing. They are not isolated messages.
Remember that windows will only process them if you have CS_DBLCLKS style defined
in your win class styles attribute. Windows sends a double click message only on the
second mouse button down message, which must be within a short time period called
double-click speed. Because of this, it is sometimes not a good idea to process messages
like left mouse button down and double click messages with totally different behaviors.
When we receive a mouse button down message, we do not know whether or not it is a
single mouse button down event or the first of a double click message. Unless, that is of
course, we introduce a delay. But this approach is confusing, so you don't need to worry.
Instead, you can make it so that a double-click message be a part of a continuation of a
single mouse button down message.

As you already know, to process the mouse messages you must add a case in your event
handler.

//All of this should be in the switch msg structure that we have created
case WM_LBUTTONDOWN:
 ; //Do action here, which can include stuff like checking for current
 //position, conjunction keys pressed, etc.

And we would add other cases to check for the other conditions.

To clear up any confusion, here is a short example of checking for mouse input. Assume that the
user has pressed down the left and right mouse buttons while holding down the shift key.

//All of this should be in the switch msg structure that we have created
case WM_LBUTTONDOWN:

POINT pt; //POINT structure
 pt = MAKEPOINT(lparam); //Macro to convert the lparam value into a point

 if(wparam & MK_RBUTTON)
 if(wparam & MK_SHIFT)

//The only way to get in here is when the left mouse button,
//the right mouse button, and shift key are down
; //Do action here

Finally, we are done with processing input messages.

Displaying Text

Displaying text is really simple. All you really need to know is a simple TextOut()
function. Here is the prototype:

BOOL TextOut(
 HDC hdc, // handle of device context
 int nXStart, // x-coordinate of starting position

 26

 int nYStart, // y-coordinate of starting position
 LPCTSTR lpString, // address of string
 int cbString // number of characters in string
);

Get it? Okay, I will explain briefly. Basically, you supply the function with the device
context, the position that the text is supposed to be displayed, the text, and the numbers of
characters in the text. The function will return a 1 if successful and a 0 if failed. Here is
an example:

 TextOut(hdc, 100, 100, "Hello World!", 13);

You can also store text in a string and then use this function to display them. Here is an
example.

 char buffer[80]; //Create a character array
 buffer = "Hello World!"; //Store something in to an array
 TextOut(hdc, 100, 100, buffer, sizeof(buffer)); //Use the sizeof operator

It's simple as that for basic displaying text.

Message Box

A message box is a window that contains a small piece of caption that asks the user to
respond by clicking pushbuttons. Simple message boxes are easy to generate. The
function MessageBox() returns a value that identifies the button pressed. Here is the
prototype:

int MessageBox(
 HWND hwndOwner, // handle of owner window
 LPCTSTR lpszText, // address of text in message box
 LPCTSTR lpszTitle, // address of title of message box
 UINT fuStyle // style of message box
);

The hwndOwner parameter identifies the window that owns the message box window.
Normally, you would set this to the handle of the window making the function call. The
lpszText and the lpszTitle are null-terminated strings used for the caption and title of
your message box window. The style of the message box deals with the icons and
options you wish to include in the message box. Thus the fuStyle can be any of these:

These bit flags set the push buttons that would appear in a message box.

Table 3-5 Message Box Window Styles
Style Description
MB_YESNO MB contains yes no
MB_YESNOCANCEL MB contains yes no cancel

 27

MB_RETRYCANCEL MB contains retry cancel
MB_OKCANCEL MB contains ok cancel
MB_OK MB contains ok
MB_ABORTRETRYIGNORE MB contains abort retry ignore

These bit flags set the different icons that can be associated with your message
box:

Table 3-5-2 Message Box Window Styles
Icons Description
MB_ICONINFORMATION Icon with letter i
MB_ICONEXCLAMATION Icon with !
MB_ICONQUESTION Icon with ?
MB_ICONSTOP Icon with stop sign

Finally, these bit flags sets the default selection of the message box:

Table 3-5-3 Message Box Window Styles
Default Selection Description
MB_DEFBUTTON1 Makes first button default
MB_DEFBUTTON2 Makes second button default
MB_DEFBUTTON3 Makes third button default

Note: You can combine these styles from the tables in any way. However, you must not
combine two elements in the same table. To combine the styles, you must use the
bitwise or operator (|).

Now let's look at the return values of the MessageBox() function. They can be:

Table 3-5-4 Message Box Window Styles
Selection ID Description
IDABORT Abort was selected
IDCANCEL Cancel was selected
IDIGNORE Ignore was selected
IDNO No was selected
IDOK Ok was selected
IDRETRY Retry was selected
IDYES Yes was selected

Note: Pressing the escape key acts as choosing the cancel option if that push button has
been declared in the message box styles attribute parameter.

Simple? Let's try to make a message box of our own. It will be a short exit message box,
with ok and cancel push buttons, default button is the cancel button, and will have a
question mark. Anyway here is the way to set it up:

int result; //Variable to hold return value of the MessageBox function call

 28

result = MessageBox(hwnd, "Exit?","Exit Message Box", MB_OKCANCEL |
MB_ICONQUESTION | MB_DEFBUTTON2);

//Check which button was pressed
if(result == IDCANCEL)
 ; //Perform Action
if(result == IDOK)
 ; //Perform Action

This is the basic approach to generating an extremely simple type of dialog box.

This entire chapter has covered a lot of ground. If you feel uneasy, it's normal. Don't
freak out. Just glance back to understand the basic material covered. It is not expected of
you to remember all the values of the tables that have been listed. All you need to
understand are the basic concepts.

With those things out of the way, let's take a look at some system basics in the next
chapter.

 29

System Basics

In this chapter, we are going to be working some advanced system stuff. These stuff
deals with retrieving the systems information.

System Metrics

Many times we want to be able to check information about the Windows environment.
Windows provide us with two functions: GetSystemMetrics() and GetDeviceCaps().
GetSystemMetrics() retrieves Windows metrics and GetDeviceCaps() returns
information about specific device context capabilities. GetDeviceCaps() will not be
covered in this text.

Since GetSystemMetrics() is the easiest to use, we will only use GetSystemMetrics() to
retrieve many Windows parameters and metrics. For instance we can retrieve the height
of a window caption, size of cursors and icons, width and height of window borders, etc.

Here is the function prototype:

 int GetSystemMetrics(int);

This by far is very simple to use. All we need to do is pass a constant symbolic name in
the parameter and the function will return the specified metric. Measurements are
returned in units of pixels or on and off flags.

Here is a table of some common system metric indices. These will return various
widths associated with the Windows environment.

Table 4-1 System Metric Indices
Symbolic names Description
SM_CXBORDER Width of a window frame that can’t be sized
SM_CXCURSOR Width of cursor
SM_CXDLGFRAME Width of a dialog frame
SM_CXFRAME Width of a window frame that can be sized
SM_CXFULLSCREEN Width of a full screen window
SM_CXHSCROLL Width of the arrow bitmap on H-scroll bar
SM_CXHTHUMB Width of the thumb box on the H-scroll bar
SM_CXICON Width of an icon
SM_CXMIN Minimum width of a window
SM_CXMINTRACK Minimum tracking width of a window
SM_CXSCREEN Width of the screen
SM_CXSIZE Width of the title bar bitmaps
SM_CXVSCROLL Width of the arrow bitmap on V-scroll bar

 30

These are the basic constants associated with the various screen widths. You can
uses these things to calculate the borders of a window, to determine the client area
of a screen and determine where to draw on the screen, etc.

The next table will include the common system metric indices indicating the
various heights associated with the Windows environment.

Table 4-1-2 System Metric Indices
Symbolic names Description
SM_CYBORDER Height of window frame that can’t be sized
SM_CYCAPTION Height of a window caption
SM_CYCURSOR Height of cursor
SM_CYDLGFRAME Height of a dialog frame
SM_CYFRAME Height of window frame that can be sized
SM_CYFULLSCREEN Height of a full screen window
SM_CYHSCROLL Height of the arrow bitmap on H-scroll bar
SM_CYICON Height of an icon
SM_CYMENU Height of the menu
SM_CYMIN Minimum height of a window
SM_CYMINTRACK Minimum tracking height of a window
SM_CYSCREEN Height of the screen
SM_CYSIZE Height of the title bar bitmaps
SM_CYVSCROLL Height of the arrow bitmap on V-scroll bar
SM_SYVTHUMB Height of the thumb box on V-scroll bar

Here are other miscellaneous symbolic names associated with the
GetSystemMetrics() function:

Table 4-1-3 System Metric Indices
Symbolic names Description
SM_DEBUG Non-zero flag indicating Windows debug
 mode
SM_MOUSEPRESENT Non-zero flag indicating if mouse exist
SM_SWAPBUTTON Non-zero flag indicating if left and right
 mouse buttons are swapped
SM_CMETRICS Count of system metrics

Anyway here is how you would use it. Simply call the function with the desired system
metric index and store the return value in an int data type.

 int cyFullScreen = GetSystemMetrics(SM_CYFULLSCREEN);

That’s all there is to using the GetSystemMetrics() function. There are few ways we can
use these information to customize our applications. For instance, we can use this to set
our window size.

 31

Full Screen Apps

We can use the system metrics in order to create full screen applications. First let’s
revisit the CreateWindowEX() function, and also our CreateWindowEX() function
call.

HWND CreateWindowEx(
 DWORD dwExStyle, // extended window style
 LPCTSTR lpszClassName, // address of registered class name
 LPCTSTR lpszWindowName, // address of window name
 DWORD dwStyle, // window style
 int x, // horizontal position of window
 int y, // vertical position of window
 int nWidth, // window width
 int nHeight, // window height
 HWND hwndParent, // handle of parent or owner window
 HMENU hmenu, // handle of menu, or child-window identifier

 HINSTANCE hinst, // handle of application instance
 LPVOID lpvParam // address of window-creation data

);

hwnd = CreateWindowEx(NULL,
 WINDOW_CLASS_NAME, "Graphics App",
 WS_OVERLAPPEDWINDOW | WS_VISIBLE,
 0, 0,
 800, 600,
 NULL,
 NULL,
 hinstance,

NULL);

In order to create a full screen window, we must specify a valid width and height for the
screen resolution. Therefore, we can replace the width and height with:

width = GetSystemMetrics(SM_CXSCREEN);
height = GetSystemMetrics(SM_CYSCREEN);

We must also change the extended window styles to use WS_POPUP and WS_VISIBLE
instead of WS_OVERLAPPEDWINDOW. This creates a window without borders and controls
and thus looks like a blank screen.

The result: the desired effect of a full screen application.

Sending Messages

Sending your own messages is very important in Windows. Recall that a message is sent
automatically when an event occurs such as clicking the mouse, pressing a key, etc. You,

 32

however, can send your own messages and allow it to be processed in the event queue by
Windows. There are two ways to do this: SendMessage() and PostMessage() functions.

SendMessage() sends a message to window immediately for processing. This function
will return only after WinProc() has finished processing the message.

PostMessage() sends a message to windows through the event queue and returns
immediately. The message has a low priority.

Here are the prototypes of the functions:

 LRESULT SendMessage(

 HWND hwnd, // handle of destination window
 UINT uMsg, // message to send

 WPARAM wParam, // first message parameter
 LPARAM lParam // second message parameter
);

BOOL PostMessage(
 HWND hwnd, // handle of destination window
 UINT uMsg, // message to post

 WPARAM wParam, // first message parameter
 LPARAM lParam // second message parameter
);

If PostMessage() is successful it return a nonzero value. SendMessage() actually calls
the WinProc() function so it returns the actually value of the WinProc() function.

Just like having to check for the event messages in the event handler, we can call those
things ourselves with these functions. For instance:

 SendMessage(hwnd, WM_DESTROY,0,0);

This will cause a WM_DESTROY message to be executed by the program, and thus end
the program. In a better context, we can use something like this to detect when a key has
been pressed and carry out a specific action. Recall the KEYDOWN() macro:

#define KEYDWN(vk_code) ((GetAsyncKeyState(vk_code) & 0x8000) ? 1 : 0)

 if(KEYDWN(VK_ESCAPE))
 SendMessage(hwnd, WM_CLOSE,0,0);

Finally, the basics of Windows systems have been covered.

 33

Using Resources

Resources are simple pieces of data that are combined with the program during linking
and can be loaded during runtime by the program. Resources can be icon files, menus,
bitmaps, sounds, etc.

Why use resources? There are lots of reasons as to why resources are used. For instance,
we can create a single .EXE that contain both the code and the data. This makes it more
organized and easier to manage. Another thing is that it doesn’t let other people access
your files and modify them or copy them.

In order to use them, you will need a resource compiler. The file .RC is the resource file
made. During compilation of the resources, a .RES file is created that is contains all the
binary data making up all the resources. If you link this file with your .CPP, .H, .OBJ,
.LIB, etc you would create your .EXE. Most compilers have linking and compiling of
resources built in. I would recommend using Visual C++ because it contains built in
resource editors as well. You can use, any program you want as long as it supports the
export format.

Icons

Icons are just bitmaps, usually 32 by 32 pixels. However it can range from 16 x 16 to 64
x 64 pixels. It can also support 16 colors to 256 colors.

First create the resource. Use any editor you want as long as .ICO files can be created.
Supposedly, you can just rename the extension of .BMP created in a paint program, but
some compilers will not accept the format. Besides, for others, you get more
functionality if you use the resource editor provided by the compiler.

In the .RC script file, you would place the following:

 iconName ICON filename.ICO

Thus, these are valid statements:

 icon_name ICON cross.ICO
 winicon ICON arrow.ICO

The compiler will assume that you are defining a string and thus will refer to your icon as
“icon_name”. If you want it to be treated as an integer ID, you must define it before hand.
It is important to put this in an .H file, as you must also include this in your main
program.

 #define icon_name 100 //Numbers are arbitrary
 icon_name ICON cross.ICO

 34

Note: This will set icon_name to be associated as a integer ID and not as “icon_name”.
Without the defines, it will be associated as a string. This means that in the program, you
would refer to it as “icon_name” instead of icon_name.

Confusing enough! Now back to loading a simple icon. Here is the example:

In the .RC file you should have something like this:

 icon_name ICON filename.ICO

In the program code, during the loading of the icon part of initializing the window class
attributes:

 winclass.hIcon = LoadIcon(hinstance, “icon_name”);

winclass.hIconSm = LoadIcon(hinstance, “icon_name”);

And if you want to use the integer ID way to load the icon:

In an .H file you should have something like this:

 #define icon_ID1 100
 #define icon_ID2 101

In the .RC you should have something like this:

 #include “headerfile.H” //Header file with the defines

 icon_ID1 ICON filename.ICO

icon_ID2 ICON filename2.ICO

In the program code, during the loading of the icon part of initializing the window class
attributes:

 #include “headerfile.H” //Header file with the defines

 winclass.hIcon = LoadIcon(hinstance, MAKEINTRESOURCE(icon_ID1));

winclass.hIconSm = LoadIcon(hinstance, MAKEINTRESOURCE(icon_ID2));

Simple right? Just remember that when using integer ID’s be sure to use the
MAKEINTRESOURCE() macro to convert the integer into a string pointer.

These things aren’t limited to that either. In fact, you can use this icon object you created
for other functions too. The small icon is what appears on the title bar as well as in the
start menu. The big icon appears in the window view in folders or on the desktop.

Make sure you have all these files saved and put them all into the project to compile.

 35

Cursors

Cursors are very much similar with icons. They are usually 32 by 32 pixels. However it
can range from 16 x 16 to 64 x 64 pixels. It can also support 16 colors to 256 colors.
Some are even animated.

First create the resource. Use any editor you want as long as .CUR files can be created.
You can use the compiler’s own resource editor to create your own cursor files because
you can define the hot spot of the cursor and so on.

Anyway, after creating the cursor, you need to define the cursor in the .RC file using the
CURSOR keyword.

cursor_name CURSOR filename.CUR

Same as icons, you can use integer ID’s to create cursors.

Let’s take a look at how to load the cursors during initialization.

In the .RC file you should have something like this:

cursor_name CURSOR filename.CUR

In the program code, during the loading of the cursor part of initializing the window class
attributes:

 winclass.hCursor = LoadCursor(hinstance, cursor_name);

And if you want to use the integer ID way to load the cursor:

In an .H file you should have something like this:

 #define cursor_ID1 100
 #define cursor_ID2 101

In the .RC you should have something like this:

 #include “headerfile.H” //Header file with the defines

cursor_ID1 CURSOR filename1.CUR
cursor_ID2 CURSOR filename2.CUR

In the program code, during the loading of the cursor part of initializing the window class
attributes:

 #include “headerfile.H” //Header file with the defines

winclass.hCursor = LoadCursor(hinstance, MAKEINTRESOURCE(cursor_ID1));

 36

Simple right? Just remember that when using integer ID’s be sure to use the
MAKEINTRESOURCE() macro to convert the integer into a string pointer.

We can also mess with the cursors at the window level. Here are the function prototypes
for two functions we can use:

HCURSOR LoadCursor(
 HINSTANCE hinst, // handle of application instance
 LPCTSTR lpszCursor // name string or cursor resource identifier
);

HCURSOR SetCursor(
 HCURSOR hcur // handle of cursor
);

Create a cursor by doing something like so:

 HCURSOR myCursor = LoadCursor(hinstance, “cursor_name”);

Then, use the newly created cursors with the SetCursor() function.

 HCURSOR oldCursor;
 oldCursor = SetCursor(myCursor);

By the way, let us take a look at some defaults cursors:

Table 5-2 System Cursors
Symbolic names Description
IDC_APPSTARTING Standard arrow and small hourglass
IDC_ARROW Standard arrow
IDC_CROSS Crosshair
IDC_IBEAM Text I-beam
IDC_ICON Empty icon
IDC_NO Slashed circle
IDC_SIZE Four-pointed arrow
IDC_SIZENESW Double-pointed arrow pointing
 northeast and southwest
IDC_SIZENS Double-pointed arrow pointing north
 and south
IDC_SIZENWSE Double-pointed arrow pointing
 northwest and southeast
IDC_SIZEWE Double-pointed arrow pointing west
 and east
IDC_UPARROW Vertical arrow
IDC_WAIT Hourglass

That’s all there is to making simple cursors and loading them into the program.

 37

Sounds

Windows only support .WAV formats so that is all I can cover. Custom resources can be
made but this is sufficient for this text.

Once again, we can create WAVE formats just like icons and cursors.

wave_name WAVE filename.WAV

Same as icons, you can use integer ID’s to create wave objects.

In the .RC file you should have something like this:

wave_name WAVE filename.WAV

This is using the string name method. To use the integer ID you would do something like
so:

In an .H file you should have something like this:

 #define wave_ID1 100
 #define wave_ID2 101

In the .RC you should have something like this:

 #include “headerfile.H” //Header file with the defines

wave_ID1 WAVE filename1.WAV
wave_ID2 WAVE filename2.WAV

There is a simple function that will load the wave object for us:

BOOL PlaySound(
 LPCTSTR lpszName, // sound string
 HANDLE hModule, // sound resource
 DWORD fdwSound // sound type
);

Note: lpszName is the string name or integer ID of the wave object. It can also be the
filename on the disk. Remember that when using integer ID’s be sure to use the
MAKEINTRESOURCE() macro to convert the integer into a string pointer. hModule
is simply the instance of the application to load the resource from. fdwSound sets the
options of how the sound is played.

The table will describe some of the most common options in configuring how the sound
is played:

 38

Table 5-2 System Cursors
Symbolic names Description
SND_RESOURCE Set as resource
SND_SYNC Synchronous playback
SND_ASYNC Asynchronous playback
SND_LOOP Loop playback
SND_PURGE End all sound

Note: To combine the styles, we must use the bitwise or operator (|).

Note: You should not combine some together because it is one or the other. For
instance, SND_ASYNC should not be combined with SND_SYNC.

Here are examples of using the PlaySound() function:

 PlaySound(“wave_name”, hinstance, SND_ASYNC | SND_RESOURCE);

PlaySound(MAKEINTRESOURCE(wave_ID1), hinstance,
SND_ASYNC | SND_LOOP | SND_RESOURCE);

That’s all there is to using simple sounds.

 39

Conclusion

Well, that’s about all that I feel is necessary to talk about. Sorry if I omit too many stuff.
It is really hard to decide which stuff is important to add and which part is too difficult to
discuss. I wanted to add stuff like adding menus, and the use of bitmaps and fonts, key
accelerators, dialog boxes, and lots more but those issues require extremely long and
detailed explanations and length code. The complexity of these things can be
overwhelming (even in the simplest reference guides and help files these things require
20-50 pages to discuss). I really wished that I could have added such awesome features,
but those things will make this text extremely lengthy and defeats the purpose of this text
all together as a simple reference and starter guide.

I can only hope that this text actually helps others. I hope that you enjoyed reading this
text and I also hoped that this text have inspired you to creating cool programs in
Windows.

