Site hosted by Angelfire.com: Build your free website today!

Airpower Magazine, Volume 7 No. 3 May, 1977

The Custer Channel Wing Story

by Walt Boyne
(continued)

The performance of the aircraft was good enough to interest several firms in its manufacture, the most promising being the Custer Channel Wing (Canada) Ltd., which secured the rights from the Custer-Frazer Corporation, and planned to build the plane in association with Norduyn Aircraft, Ltd. The short field capability of the CCW-5 was attractive to bush pilots, and an initial production run of 100 was planned.

This operation, like several other potential manufacturing plans, fell through, primarily because of problems synchronizing FAA approval of the aircraft, and SEC approval of the financing.

Custer undertook to build the 1st production CCW-5 at Hagerstown, Maryland, using Baumann Brigadier drawings as a start point, but modifying these as necessary to suit the different construction and stress requirements of the channel wing configuration. This, the fourth channel wing airplane, was rolled out on July 4, 1964, and it appeared that after many years of struggle the Custer Channel Wing was finally going to be marketed.

Fate intervened in the form of the Securities Exchange Commission, which took exception to the manner in which the corporation stock had been issued, and the rug was pulled out from under the venture.

The production aircraft was outwardly similar to the prototype, but building it from the ground up rather than converting existing Baumann components permitted considerably reducing drag. There were external differences, too; the engine nacelles were more streamlined, the wing had 2" less span, the nacelle strut bracing was simplified, the ailerons were moved further outboard on the wings, and rudder and aileron travel were increased slightly.

In the steps toward FAA certification, it became necessary to raise the position of the horizontal surfaces, which impaired STOL performance. As previously noted, the CCW pilot has to get the horizontal surfaces below the vectored slipstream as soon as possible for optimum results.

Performance figures for the production CCW-5 varied little from the prototype, with the same top end performance indicated. Power on stalling sped was listed as 22 mph, initial rate of climb, 1,600 feet per minute, with a 22,000 foot service ceiling.

A single engine service ceiling of 5,000 feet was obviously a limiting factor in performance, and Custer planned to remedy this with improvements in the propeller/channel trailing edge juncture. A moveable sleeve has been suggested, one which would maintain a tight seal at the channel for STOL work, but which could retract for higher cruise performance.

And so engineering rears its ugly head again -- if the advantages of the CCW derive from the channel section with its relative lack of mechanical complexity compared to slots and flaps, what does the addition of a moveable surface do? This and other similar questions will be covered in the engineering discussion.

Where does the program stand now? It still has its advocates, and there have been proposals for putting channels on everything from Curtiss C-46s to Fairchild F-27s, to executive jets. As indicated above, there is a real possibility that full scale testing of the production aircraft by a government agency will take place. But whatever occurs, you can be sure that Willard R. Custer will not stop fighting the good fight, nor will he be convinced that his discovery is not, still, the coming thing. continue...


page 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | pictures
HomeHome | Inventor | Concept | Story | Today | Site map