Site hosted by Angelfire.com: Build your free website today!

THEORY OF CHANNEL WING AIRCRAFT:
SPEED OF AIR

(continued)

Summary

Summarizing, although both applications are affected by the same basic laws, aerodynamic and aerophysics principles follow different paths to attainment of “flight” results that are dissimilar:

In aerodynamic flight, power is applied exponentially to produce singular velocity relationship of the airfoil to the stationary air. Any deflection from the plane of optimum flight reduces the supporting forces. High velocity is restricted by air compressibility, low velocity is hampered by the relationships required to obtain Lift and “Hovering” requires a Thrust force of greater magnitude than the weight. Best “flight” results are obtained by power plants providing maximum mass acceleration of a Thrust force with low propulsive efficiency in conditions of greatest fuel consumption (high energy less applications).

In aerophysics, Channel Wing omni-directional “flight” velocities are of fourth-dimensional relationship; associated with aircraft attitude, Thrust dissipation, and amount of energy invoked. Power is applied to “induce” the major supporting force and to provide deflective forces which augment either the supporting force or the propulsive force; thus increased power requirements approach the straight-line curve. Low relative velocity of the aircraft is possible and “hovering” occurs for weights much greater than Thrust force by conversion of “horsepower” energy. Velocity “spread” is contingent upon induced vacuum as attained by an efficient propeller, efficient power plants of reliable design to “flight” power requirements.

1 | 2 | 3 | 4
HomeHome | Inventor | Concept | Story | Today | Site map