Physics of Racing, Part 27:
Four-Wheel Weight Transfer

Brian Beckman, PhD
Copyright' Dec 2001

In this installment, we revisit the four-wheel statics of Part 20, solving the statics problem
for level ground, which is very common in simulation. The problem is: lgiven lateral and
ﬂongitudinal forces, find the balancing vertical forces‘. In so doing, we introduce a
conventional coordinate system and a new tool: Mathematica. This is a comprehensive
mathematics package that we use for symbolic manipulation.

First, let’s introduce the standard coordinate frame used by the SAE, which is documented
in the usual source books by Milliken (Race Car 1ehicle Dynamics) and Gillespie (Fundamentals
of Vehicle Dynamics). In this frame, X is forward (longitudinal), Y is to drivet’s right
(lateral), and Z is downward (vertical), in the direction of gravitation. The following figure
illustrates:

X Front
. —— >V
h
_ ¥

2\ -

NN
>

The symbols have the following meanings:

Ir
Rear

h vertical distance of the Center of Gravity (CG) from the ground
a,b longitudinal distance from the CG to the front and rear axle geometry centers

t,,t. front and rear half-track lateral distances from axle centers to contact patch (CP)

These give us the geometry needed to locate the CPs. Let’s code this up in Mathematica
(MMA, see www.wolfram.com). We open up an MMA ‘Notebook’ and write

! The “Physics of Racing” is a set of free articles. This means that I hereby grant to everyone everywhere a perpetual,
transferable, royalty-free license to copy, print, distribute, reformat, translate, host and post the atticles in any form,
electronic or other. I ask only that you (1) do not change the content or attribution (that is, the author’s name) (2) do not
charge money for copies in any form (3) do not restrict the ability or rights of others to copy these articles freely.

Physics of Racing 27 12/20/01 -1-

tireLocs = {{a, tf, h}, {-b, tr, h},
{-b, -tr, h}, {a, -tf, h}};
This code defines ti reLocs as a list of 3-vectors, each being a list of locations in three-
dimensional space in the car-fixed, SAE coordinate frame. Numbered the tires clockwise
from right front (RF). So the RF tire has location X =a, Y =t, ,and Z =h, and so on for

the RR, LR, and LF, in order. Note that &, t; , and h do not need predefined values: MMA

treats any undefined symbol as just a symbolic constant (nice!l). This is the distinguishing
aspect of a symbolic math language like MMA as opposed to an ordinary computer language
like C++.

Define a numerical sample early so that it's handy for intuitive checks. The following are for

a Lamborghini Diablo, found from a web search, in Meters and Newtons:
numRz = {

a->1.425, b-»1.029,

tf -1.735/2, tr -1.760/ 2,

h- 0.420, my » 16680};
This code defines a variable, nunRz, whose value is a list of MMA rules. The following
function of two parameters shows how to apply rules:

nm 8[term, fRzlnput _1:= ((term/. nunRz) /. fRzl nput)

This code defines a firnction named nmi 8 that takes any t er mand applies to it first the rules
nunRz and then any other set of rules, locally named f Rzl nput . The underscores after the
names t er mand f Rzl nput in the parameter list are part of MMA’s deep pattern-matching
syntax. For present purposes, just think of them as necessary noise when defining a function.
Test what we have so far as follows:

nm 8[tireLocs, {}]
{{1.425, 0.8675, 0.423, {-1.029, 0.88, 0.42},
{(-1.029, -0.88, 0.42}, {1.425, -0.8675, 0.42)

Here is see an example of input and output syntax from MMA. We applied the function
nni 8 to the preexisting list of geometry vectors and to a null list of extra rules to get
numerical locations of the CPs. These numbers are sensible, by inspection.

Now make a couple of symbolic lists of forces operating on the tires. Separate the forces
operating in the X —Y plane from the vertical forces since the former are given and the
latter are the final objects of our solution efforts.
fxy = {
{f1x, f1y}, {f2x, f2y}, (* right side %)
{f3x, f3y}, {fax, fd4y}} (= left side x);
fz={f1lz, f2z, f3z, f4z},;
For immediate purposes, combine them into three-forces, and there is some magic juju for
doing that in MMA:

threeForces = MapThr ead [Append, {fxy, -fz}]
({fix, f1y, -fi1z}, (f2x, fz2y, -f2zy, {f3x, f3y, -f3z1, {fd4x, fd4y, -fdz}}

Physics of Racing 27 12/20/01 -2-

Lisp programmers will say “Ahal” MapThr ead runs a function, in this case, Append, down
some lists, and Append glues lists together. The two threaded lists are f xy and f z, defined
immediately above. Use the negative of f z so that the vertical force vectors point upwards
and the force components can be positive numbers. This code makes a new list of four 3-
forces named t hr eeFor ces.

Now to the physics. Remember that torque is lever -arm X force , where X is the vector
cross product. We have lever-arms in one list, ti r eLocs, and forces in another,
t hr eeFor ces, so the torques about the CG at each CP are immediately available:

threeTorques = MapThread[Cross, {tireLocs, threeForces}]
{({-fly h-flz tf, aflz +flx h, afly - fix tf },

(-f2y h - f2z tr, -bf2z +f2x h, -bf2y -f2x tr},

(-f3y h+f3z tr, -bf3z +f3x h, -bf3y +f3x tr},

{(-fdy h +fd4z tf, afdz +fdx h, afdy + fax tf }}

When the car is not flipping over, the X and Y torques are in equilibrium. The Z torque
accounts for yaw, so it’s free. Add up the X and Y torques:

sumrorques = Si nmplify[Plus ee threeTorques]

{(-fly h-f2y h-f3y h -fdy h -flz tf +fd4z tf -f2z tr +f3z tr,
-b (f2z +f3z) +a (flz +f4z) + (f1x + f2x + f3x +f4x) h,

-b (f2y +f3y) +a (fly +fdy) - fix tf + fax tf - f2x tr +f3x tr}

“@@” is MMA juju for applying the function Pl us actoss a list of vectors. It’s similar to
MapThr ead, but not quite the same (see the MMA documentation for details). Construct and
solve the X and Y equations for torque equilibrium:

tor queEquati ons = {sumlorques[[1]] == 0, sumlorques[[2]] = 0};
The double square brackets pick out elements of lists, so sunilor ques|[[1]] is the first
element of sumTorques, that is, the torque about the X axis. The double-equals is an
assertion that sunilor ques[[1]] is zero, and solvable MMA equations must contain double
equals. We have a similar equation for sunilor ques[[2]], the Y torque. Thus,
t or queEquat i ons is a list of two equations. Solving:

ri ght HandRul es = Sol ve [t orqueEquati ons, {f1z, f2z}] //Full Sinplify

flz -»
{{ (@fdz + fIx +f2X +f3x +fax) hytr +b ((fly +f2y +f3y +fdy) h-fdz tf -2f3z tr)
- btf +atr '
f2z -
-bf3z tf + fIx +f2X +f3x +fax) htf —a ((fly +f2y +f3y +fdy) h-2fdz tf -3z tr)
btf +atr H

This code solves the equations for the specified variables, f 1z and f 2z, expressing the
solution as rules that can be applied in other contexts. We’ve already seen numerical rules in
action, but we can have symbolic ones too, and equation solutions are an example.

These solutions are a ‘mouthful’, but notice, slightly surprisingly, that the lateral and

longitudinal forces show up only as their sums, so reduce the amount of ‘verbiage’ by
defining and applying a couple of rules by hand

Physics of Racing 27 12/20/01 -3-

fxRule=flx+f2x +f3x +f4x > fXx;
fyRule =fly + f2y + f3y +f4dy > fy;

rhr = ri ght HandRul es /. {f xRul e, fyRul e}

(afdz +fx h)ytr +b (fyh-fd4z tf - 213z tr)

{{lee— ,
btf +atr
27 -bf3z tf +fx htf ~a (fyh-2f4z tf -f3z tr) H
btf +atr

I hr = | eft HandRul es /. {f xRul e, fyRul e}
-(aflz +fxh)tr +b (fyh+flz tf + 2f2z tr)

{{f429 ,
btf +atr
(-bf2z +fx h)tf +a (fyh+2flz tf +f2z tr)
f3z - btf +atr }}

Notice the solution for the left-hand side (LHS) of the car, obtained by methods analogous
to those for the right-hand side (RHS). These expressions are much more digestible. The
first thing to notice is that the solutions for f 1z and f 2z, on the RHS, depend on the
solutions for f 3z and f 4z on the LHS. This is no help. As discussed in Part 20 of the Physics
of Racing, we need more information. [Posit that cross ratios of weights are equal: that any]
weight-jacking in the car is symmetrid. For instance, the ratio of left to right is the same at
front as at rear, or, equivalently, that the ratio of front to rear is the same on left as at right.
These conditions yield another equation.

eql =flzf3z ==f2zf4z;
Get one more equation from force equilibrium: the sum of all vertical loads equals the
weight of the car.

eq2=mg = (flz+f2z+f3z +f4z);
Solve for rules to eliminate f 3z and f 4z from the right-hand rules obtained above:
s34 = Sol ve[{eql, eq2}, {f3z, f4z}]

{{f?:z —>—f22 (fiz +12z - ny) . faz _)_le (flz +f2z -my) }}
flz +f2z flz +f2z

rTea=Flatten[Full Sinplify[rhr /. s34]]

{flze—;((th+aflz 1+ ™)er s
btf +atr f1z +f2z
b (fyh+ (flz +f2z -nmg) (flz tf +2f2z tr) ,
flz +f2z
sz%;(ththrbsz (flz +f2z —ny) tf
btf +atr flz +f2z
flz + f2z - 2flz tf +f2z tr
a(fyn M) ()5
flz +f2z

The important thing here is the expression r hr/ . s34, which applies the elimination rules to
rhr. The functions Ful | Si npli fy and Fl atten are afterthoughts to reduce the verbosity
of the symbolic results.

This is great. We have expressions that depend oz/y on flz and 2z, so we have successfully
isolated the RHS. Convert these rules to equations thusly, and solve again:

Physics of Racing 27 12/20/01 -4 -

r Noah = Map [Appl y [Equal , #] & rTea]
rsoln=Sinplify[Solve[rNoah, {flz, f2z}]]
sflz=rSoln[[1, 1, 2]1;

sflzs = Full Sinplify[sflz]
1 -fx h+bny fyh (fx h-bng)

2 a+b +th(—tf +tr) +mg (btf +atr)

Some of the above, you must take on faith due to lack of space to explain. Suffice it to say
that we do likewise for tires 2, 3, and 4, getting

sf2zs = Ful | Sinplify[sf2z]
i(th+arrg) 1o fyh)
2 a+b fxh (-tf +tr) +nmg (btf +atr)

sfd4zs = Ful | Sinplify[sf4z]

i —th+brrg_ fyh (fxh-bng))

2 a+b fxh (-tf +tr) +mg (btf +atr)
sf3zs = Full Sinplify[sf3z]

i(th+arrg) 1 + fyh)
2 a+b -fxhtf +bngtf +fxhtr +angtr

Finally, we check the results

Full Simplify]
(Ful'l Si mpli fy[sunTorques /. fxRule] /. fyRule) /.

| Soln/. rSoln]
{{{0, 0, -b (f2y +f3y) +
a (fly +fdy) —fix tf +fax tf —f2x tr +f3x tr }}}

getting 0 for the X and Y torques, as required. Visually, we see regular patterns in the
solutions above. returning to traditional notation, first define

ty =(bmg-F, h)/2
ti =(@amg+F, h)/2
r=y(a+b)
hF

R, = Y
*hF,(t -t) +mg(at, +bt,)

The first two terms have the dimensions of torques, that is, force by distance. It is, however,
difficult to interpret them as torques on the chassis with some sort of intuitively meaningful
relevance to the problem at hand. Think of them as just some expressions with interesting
form extruded from the solution. The next two terms have the dimensions of inverse length.
The forces, then, have the following convenient, almost pretty forms:

Physics of Racing 27 12/20/01 -5-

F[LF]Z =y (|_+ I?QA) F[RF]Z =ty (I__ ﬁA)
Fiirz =l (|_+ _A) Firz = lar (I_— |sz)

Finally, we can use some of MMA’s graphics functions to get a visual check on these results.
Apply the numerical rules to the solution for tire 1
flzPrototype = Sinplify[nm 8[sflz, {}]]
(0. 203749 (-17163.7 +0.42 fx)
(-35806.2 -0.00525 fx +1.03068 fy)) /
(35806.2 +0.00525 fx)

Redefine it as a function by hand so we can plot it
funclz[fx_, fy_1:=
(0.203749 % (-17163. 72 +0. 42 xf Xx) =
(-35806. 25 - 0. 00525 % x + 1. 03068 «fy)) /
(35806. 25 + 0. 00525 »f x)
Pl ot 3D[funclz[x, y], {x, 0, 20000}, {y, 0, 20000}]

As expected intuitively, the weight on tire 1, the right front, decreases with increasing lateral
and longitudinal forces, which range from 0 to 20,000 Newtons in the plot. As the
longitudinal force increases, the car is forced forward and the weight is taken off the nose.
As the lateral force increases, the car is forced rightwards and weight transfers to the left as
in a right-hand turn. The other three tires behave likewise reasonably.

We have posed and solved a familiar racing problem using a programming language for
symbolic mathematics. We can code up these solutions in an ordinary language like C++ and
use them in our simulation program. This methodology illustrates the application of one
programming language, MMA in this case, to the design of software in another
programming language. In fact, there is very significant time savings in using powerful tools
like this, since the alternative is coding up algebraic mistakes in C++ and then debugging
them in the context of a running simulation. This latter approach is very, very time-
consuming and labor-intensive. In future articles, we will use another tool, Matlab, to design
some more simulation software.

Physics of Racing 27 12/20/01 -6 -

