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Chapter 4:  Simple Linear Regression 
 
4.1  Linear regression and prediction 
 
Linear regression uses the relationship between distributions of scores in making predictions.  If 
there is a relationship between two distributions, it is possible to predict a person's score in one 
distribution on the basis of their score in the other distribution (e.g., using a score on an aptitude 
test to predict actual job performance).  Simple regression refers to the situation where there are 
only two distributions of scores, X and Y.  By convention, X is the predictor variable, and Y the 
criterion (or predicted) variable.  Multiple regression, which we will address later, refers to 
situations with a single criterion (Y), but more than one predictor (X1, X2, etc). 
 
4.2  Definitions 
 
a) A scatterplot is a graph of paired X and Y values 
 
b) A linear relationship is one in which the relationship between X and Y can best be 

represented by a straight line. 
 
c) A curvilinear relationship is one in which the relationship between X and Y can best be 

represented by a curved line. 
 
d) A perfect relationship exists when all of the points in the scatter plot fall exactly on the line 

(or curve).  An imperfect relationship is one in which there is a relationship, but not all 
points fall on the line (or curve). 

 
e) A positive relationship exists when Y increases as X increases (i.e., when the slope is 

positive). 
 
f) A negative relationship exists when Y decreases as X increases (i.e., when the slope is 

negative). 
 
 
4.3  Equation for a straight line 
 
The equation for a straight line is usually written as: 
      
 Y bX a= +  (4.1) 
 
 where   b = slope of the line 
      = (Y2 - Y1) / (X2 - X1) 
    = “the rise” divided by “the run” 
 
 and   a = the Y-intercept 
      = the value of Y when X = 0 
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Perhaps an example will help to clarify what this means.  Imagine that you have decided to start 
working out at a gym.  The annual membership fee is £25, and in addition to that, you must pay 
£2 every time you go to the gym.1  If we let X = the number of times you go to the gym, and Y = 
the total cost, we would find that: 
 
 2 25Y X= +  (4.2) 
 
The Y-intercept is 25.  That is, if you never go to the gym (X = 0), your total cost is £25.  And the 
slope of the line (b) is 2:  Every time you go to the gym, it costs you another £2.  Putting this 
another way, every time there is an increase of 1 on the X-axis, there is an increase of 2 on the Y-
axis. 
 
4.4  The best fitting regression line:  Least squares criterion 
 
When the relationship between X and Y is perfect, one can use the method shown above for 
calculating the slope (b), and then calculate the Y-intercept (a) by substituting known values for 
X and Y and solving for a.  The method shown above does not work, however, when the 
relationship between X and Y is imperfect.  Therefore, we need to calculate the slope (b) and Y-
intercept (a) by some other means.  The most frequently used method is the least squares 
method.  And the formula for the least squares regression line is: 
 
 Y YY b X a′ = +  (4.3) 
 
Note that some textbooks use ˆ Y  (pronounced “Y-hat”) in place of Y ′ .  And some books use 0b  
in place of Ya .  Y ′ , (pronounced “Y-prime”) is the predicted value of Y.   
 
4.4.1  How to calculate the slope 
 
There will be a few formulae in this section, but many of them should already be familiar.  
Please bear with me.  The most common version of the formula for the slope constant in least 
squares regression is: 
 

 Y
X

SPb
SS

=  (4.4) 

 
 
The “Y” subscript on bY  indicates that this is the slope for the regression of Y on X—that is for 
the equation that allows prediction of Y-values from X-values. 
 
In case anyone has forgotten, SS is shorthand for the sum of the squared deviations about the 
mean.  The “X” subscript indicates that it is the “sum of squares” for the X-scores that we need.  
The conceptual formula for SSX is: 
                                                 
1 This method of charging for gym memberships is common in the UK.  I was living there when I wrote 
the first version of these notes—hence the reference to Pounds Sterling rather than dollars. 
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 2( ) ( )( )XSS X X X X X X= − = − −∑ ∑  (4.5) 
 
 
SP stands for “sum of products”.  Its conceptual formula is shown in equation 4.6.  The product 
for each (X,Y) pair is obtained by multiplying the (X − X ) difference by the (Y − Y ) difference.  
SP = the sum of these products. 
 
 ( )( )SP X X Y Y= − −∑  (4.6) 
 
 
 
4.4.2 How to calculate the Y intercept (aY) 
 
It is a fact that the least squares regression line passes through the point (X,Y ) .  Therefore, 
we can substitute these two means into the equation for a straight line, and solve for a: 
 
 Y YY b X a= +  (4.7) 
 
Subtracting Yb X  from both sides, we get: 
 
 Y Ya Y b X= −  (4.8) 
 
 
4.5 Why this method is called the least squares method 
 
This method of finding the best fitting regression line is called the least squares method because 
it minimizes the sum of the squared errors in prediction.  In other words, if we let Y’ = the 
predicted value of Y, then 
 2( )  a minimumY Y ′− =∑  (4.9) 
 
The quantity (Y - Y') is the amount of error in prediction.  It is the difference between the actual 
Y score and the predicted Y score.  We square this term before summing, because the sum of 
the errors in prediction equals zero (just like the sum of the deviations about the mean equals 
zero). 
 
Note that because the least squares regression line minimizes the sum of the squared errors, it 
gives greater accuracy in prediction than any other possible regression line. 
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4.5.1.  Proof that bY = SP/SSX 
 
The following is from David W. Stockburger's online textbook, Introductory Statistics: 
Concepts, Models, and Applications (http://www.psychstat.smsu.edu/introbook/sbk16.htm). 
 
The problem is presented to the mathematician as follows: "The values of a and b in the linear model Y'i = a + b Xi 
are to be found which minimize the algebraic expression  

 

The mathematician begins as follows: 

 

Now comes the hard part that requires knowledge of calculus. At this point even the mathematically sophisticated 
student will be asked to "believe." What the mathematician does is take the first-order partial derivative of the last 
form of the preceding expression with respect to b, set it equal to zero, and solve for the value of b. This is the 
method that mathematicians use to solve for minimum and maximum values. Completing this task, the result 
becomes: 

 

 
Notice the following about Stockburger’s expression for the regression coefficient b: 
 

a computational formula for 
X Y

N XY X Y XY SP
N

− = − =∑ ∑∑ ∑ ∑ ∑

 ( ) ( )2
22 2 a computation formula for X

X
N X X X SS

N
− = − =∑∑ ∑ ∑  

 
Therefore, as noted earlier in this chapter: 
 

2

( )( )

( )X

X X Y YSPb
SS X X

− −
= =

−
∑

∑
 

http://www.psychstat.smsu.edu/introbook/sbk16.htm
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4.6 The regression of X on Y 
 
What we have been talking about so far concerns the prediction of Y given a value of X.  The 
regression line we constructed when attempting to predict Y from X is called the regression of 
Y on X.  It may sometimes be the case, however, that we wish to predict X given Y.  In order to 
do so, we must construct a new (different) regression line that minimizes the sum of the squared 
errors in predicting X given Y.  That is to say that errors in prediction are measured horizontally 
(left to right) rather than vertically in this situation.  This new regression line is called the 
regression of X on Y. 
 
Note that it is always the regression of the predicted variable on the known variable.  Thus, if 
X is known and you are trying to predict Y, you have the regression of Y on X.  If Y is known 
and you are trying to predict X, you have the regression of X on Y.  If height is known and you 
are trying to predict weight, then you have the regression of weight on height. 
 
The linear equation for the regression of X on Y is given by: 
 
 X XX b Y a′ = +  (4.10) 
 
 where  X'  = predicted value of X 
   bX = slope 
   aX = X intercept 
 
The slope (bX ) can be computed with either of the following formulae: 
 

 X
Y

SPb
SS

=  (4.11) 

 
 
And because the regression line passes through the point (X,Y ), the X-intercept can be 
computed as follows: 
 
 X Xa X b Y= −  (4.12) 
 
 
Note that all we have done is swap around the X’s and Y’s in the formulae shown previously. 
 
 
4.7  The standard error of estimate 
 
When you are looking at a single distribution of scores, the variance and standard deviation 
are measures that indicate the degree to which scores are spread out around the mean.  In the 
case of bivariate distributions and linear regression, it would be useful to have similar measures 
that indicate the amount of spread around the regression line.  There are in fact two such 
measures:  The variance error of estimate, and the standard error of estimate.  The latter is 
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the square root of the former.  The standard error of estimate is to the least squares regression 
line what the standard deviation is to the mean of a distribution.  (I will say more about this 
later.) 
 
 
4.7.1 Conceptual Formula 
 
The conceptual formula for the standard deviation of a distribution of Y-scores is given by: 
 

 
2( )

1Y

Y Y
s

n
−

=
−

∑  (4.13) 

 
 
The conceptual formula for the standard error of estimate when estimating Y given X is very 
similar.  See if you can spot the two differences in equation (4.14):  
 

 
( )2

2Y X

Y Y
s

n
′−

=
−

∑  (4.14) 

 
The first difference from equation (4.13) is that the deviations in the numerator are around the 
least squares regression line (i.e., around the predicted values of Y) rather than around the mean.  
And the second difference is that the denominator is n-2 rather than n-1.  In other words, 
whereas df = n-1 for the variance and standard deviation of a single distribution of scores, df = 
n-2 for the standard error of estimate for a bivariate distribution.  (More generally, as we will see 
later, df = n-p-1, where p = the number of predictor variables.) 
 
 
4.7.3 The standard error of estimate when predicting X given Y 
 
If you wish to predict X from Y, as we saw in section 4.6, you must use a least squares 
regression line that is different from the one used to predict Y from X.  If follows from this that 
the standard error of estimate when predicting X given Y will also be different from the standard 
error when prediction Y given X.  The conceptual and computational formulae are given below: 
 
 

 
( )2

        { conceptual formula }
2X Y

X X
s

n
′−

=
−

∑  (4.15) 
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4.8  Miscellaneous points about linear regression 
 
Linear regression is used to predict a Y score from a score on X.  Bear in mind the following: 
 
 1) The relationship between X and Y must be linear.  If the relationship is not 

linear, prediction will not be very accurate. 
 
 2) Normally, we are not interested in predicting Y scores that are already known.  

We derive our regression equation with sample data that consists of paired X and 
Y scores, but use the equation to predict Y scores when only X values are given.  
Because we use data collected from a sample to make these predictions, it is vital 
to have a representative sample when deriving a regression equation. 

 
 3) A regression equation is properly used only for the range of the variables on 

which it was based.  We do not know whether the relationship between X and Y 
continues to be linear beyond the range of sample values. 

 
4) Prediction is most accurate if the data have the property of homoscedasticity—

i.e., if the variability of the Y scores is constant at all points along the regression 
line. 

 
 5) When X and Y are both normally distributed and the number of paired scores is 

large, the data in a bivariate frequency distribution often produce a so-called 
bivariate normal distribution.  When you have such a distribution, the standard 
error of estimate can be used in the same way we used the standard deviation of 
a normal distribution.  That is, we could say that about 68% of the scores in the 
scatterplot fall within 1 standard error of the regression line; and about 95% of 
the scores fall within 2 standard errors of the regression line. 

 
4.9  Linear regression and Pearson r 
 
Like linear regression, correlation is concerned with the relationship between two (or more) 
variables.  Regression is typically concerned with using the relationship for prediction.  
Correlation, on the other hand, is concerned with finding out whether there is a relationship, and 
if there is, determining its strength and direction. 
 
If two variables are correlated, then one variable may be the cause of the other.  If two variables 
are not correlated, there is no causal relationship between the two--at least not a linear causal 
relationship.   
 
A correlation coefficient is a number that expresses the magnitude and direction of the 
relationship between two (or more) variables.  The Pearson product moment correlation 
coefficient (Pearson r) is a correlation coefficient that ranges from - 1.00 to 1.00 . 
 
  a)  if r =  1.00 -- perfect positive linear relationship 
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  b) if r = -1.00 -- perfect negative linear relationship 
 
  c) if r =  0.00 -- no linear relationship 
 
 
4.9.1 Pearson r:  Conceptual Formula 
 
Conceptually, Pearson r is the slope of the least-squares regression line when linear 
regression is carried out on z-scores rather than on raw scores.  You will recall that a z-score 
indicates the position of a score relative to the mean of the distribution, in standard deviation 
units.  In other words, a z-score of 2.5 indicates that the raw score is 2.5 standard deviations 
greater than the mean. 
 
Let us suppose that we have two sets of scores, X and Y.  If the z-score corresponding to X1 is 
equal to the z-score corresponding to Y1, then we know that X1 and Y1 occupy the same relative 
positions within their respective distributions.  In other words, Pearson r is a measure of the 
extent to which paired scores occupy the same or opposite relative positions within their 
respective distributions. 
 
4.9.2 Pearson r from Raw Scores 
 
In your reading, you may come across various computational formulae for Pearson r.  Two of the 
most common computational formulae are shown below.  Unlike most computational formulae, 
the second of these does actually provide some insight into the meaning of Pearson r.  It 
indicates that Pearson r is to a scatterplot as a z-score is to a univariate distribution of scores.  
That is, Pearson r is a measure of the covariance of the X and Y scores, but is measured in 
standard score units rather than in raw score units. 
     

 
X Y

SPr
SS SS

=  (4.16) 

 
 
4.10  The coefficient of determination 
 
If we square Pearson r, we obtain 
 
 r2 = proportion of the variability of Y accounted for by the linear relationship between 

X and Y 
 
Note that "the proportion of the variability of Y accounted for by the linear relationship between 
X and Y" is usually abbreviated to "the variability of Y accounted for by X".  Because r2 
equals the proportion of the variability of Y accounted for by X, it is called the coefficient of 
determination. 
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In order to understand what is meant by "proportion of variability of Y accounted for by X", let 
us consider a concrete example where X is a score on a test of spelling competence, and Y is a 
score on a test of writing ability.  The data for N=6 subjects are shown below.   
 

Case Summariesa

20 20
30 50
45 35
60 60
78 45
88 90

6 6
53.50 50.00
26.76 23.87

715.900 570.000

Subject
1
2
3
4
5
6 (Mary)

N
Mean
Std. Deviation
Variance

Total

Spelling
score (X)

Writing score
(Y)

Limited to first 100 cases.a. 
 

 
Let us imagine for just a moment that we do not know Mary’s Y-score (writing ability), and wish 
to predict it from her X-score.  If there were no linear relationship between X and Y, then the 
best prediction we could make would be the mean of the Y scores, or 50 in this case.  However, 
because there is a linear relationship between X and Y, we can do better than that by using the 
regression line to make our prediction.  As can be seen in Figure 4.1, Mary’s predicted Y-score 
is about 75.   

 
Mary’s actual Y-score is 90.  Therefore, the deviation of her actual Y-score from the mean of Y 
is 90 - 50 = 40. 
 
 ( ) 90 50 40iY Y− = − =  (4.17) 
 
 
Note that if you were to take the same kind of ( )iY Y−  deviation score for each of the six people, 
square them, and add them up, you would have the sum of the squared deviations about the 
mean, or SSY.   
 
Returning to Mary’s case, note that her deviation (from the mean of Y) score can be broken 
down, or partitioned into two components.  The first component is the deviation of her 
predicted score from the mean of Y.  As noted earlier, Mary’s predicted score is 75, so: 
 
 ( ) 75 50 25Y Y′ − = − =  (4.18) 
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Figure 4.1  Relationship between spelling competence (X) and writing ability (Y).2   

 
 
The second component of the deviation of Mary’s actual score from the mean of Y is the 
deviation of her actual score from her predicted score: 
 
 ( ) 90 75 15iY Y ′− = − =  (4.19) 
 
The important thing to note is that these components are additive.  That is, when you look at an 
individual case, the following will be true: 
 
 ( ) ( ) ( )iY Y Y Y Yi Y′ ′− = − + −  (4.20) 
 
Finally, if you were compute these components for each of the X-Y pairs and square them, you 
would find that the following is also true: 
 
 ( ) ( ) ( )

2 2 2
i iY Y Y Y Y Y′ ′− = − + −∑ ∑ ∑  (4.21) 

 
                                                 
2 Figure is based on Figure 7.6 from Pagano (1990). 

Mary’s actual 
Score (Yi) 

Predicted score (Y’) 

′ Y − Y

Yi − Y

Y
Y 

X 

Yi − ′ Y 



B. Weaver (27-Jul-2004)   Simple Linear Regression ...   11
   

You should recognize the left-hand portion of equation (4.21) as SSY.  The first term on the right-
hand side is that portion of SSY that can be accounted for (or explained) by the linear relationship 
between X and Y.  It is sometimes symbolized as YSS ′  or |Y XSS , or regressionSS .  And the final 
term is that portion of SSY that cannot be explained by the linear relationship between X and Y.  
It is also know as errorSS , Y YSS ′− , or residualSS . 
 
And so, equation (4.21) can also be expressed as follows: 
 
 Y Y errorSS SS SS′= +  (4.22) 
 
Note, however, that many textbook authors (including Norman & Streiner) refer to YSS ′  as 

regressionSS .   Also, errorSS  is often referred to as residualSS  (to reflect that fact that it is the portion 
of YSS  that is left over after we’ve explained as much as we can by virtue of the linear 
relationship between X and Y).  So equation (4.21) may also be expressed as: 
 
 Y regression residualSS SS SS= +  (4.23) 
 
 
Conclusion 
 

 

2   proportion of variability of Y accounted for by X

variability of Y accounted for by X    =  
total variability of Y

     =     1regression residual

Y Y

r

SS SS
SS SS

=

= −

 (4.24) 

 
 
 
4.11 Significance testing in linear regression 
 
We have just seen that SSY  can be partitioned into SSregression  and SSresidual.  This is very similar 
to the partitioning of SSTotal  in one-way ANOVA.  (In that case, one partitions TotalSS  into 

Between groupsSS −  and Within groupsSS − .)  In linear and multiple regression, there are p degrees of 
freedom associated with regressionSS , where p = the number of predictor variables.  So in the case 
of simple linear regression (i.e., only one predictor variable), 1regressiondf = .   
 It follows from this that regression regressionMS SS= , because regression regression regressionMS SS df= . 
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                           SSY          dfY 
 
 
         

  SSregression  SSresidual  dfregression    dfresidual 
 
 
 

Figure 4.2:  Partitioning diagram for ANOVA of simple linear regression. 
 
 
There are N-p-1 degrees of freedom associated with SSresidual.  (N = the total number of subjects, 
p = the number of predictor variables.)  Thus,  
 

 
( 1)

residual
residual

SSMS
N p

=
− −

 (4.25) 

 
And finally,  
 

 ( , 1)
regression

p N p
residual

MS
F

MS− − =  (4.26) 

 
 
This F-value can be used to test the significance of r2 (or R2 in multiple regression). The null 
hypothesis for this test states that none of the variability of Y is accounted for by a linear 
relationship between X and Y.  Note that as usual, we are using values we have sampled to make 
an inference about a population.  So a more accurate statement of the null hypothesis would be 
that in the population from which we have sampled our X and Y scores, there is no linear 
relationship between X and Y. 
 
 
 
4.12  The standard error of estimate revisited 
 
Earlier, I gave conceptual and computational formulae for standard error of estimate in linear 
regression--see equations (4.14) and Error! Reference source not found..  Many textbooks also 
offer the following formula: 
 

 
2(1 )( 1)

( 2)YY X
r ns s
n

− −
=

−
 (4.27) 
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Other texts give this formula: 
 
 2(1 )YY Xs s r= −  (4.28) 
 
 
Equation (4.28) can be used in place of equation (4.27) when the sample size is large.  When 
that is the case, the ratio of (n-1) / (n-2) will be virtually equal to 1. 
 
 
 
 
 

Figure 4.2:  GPA as a Function of IQ
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Figure 4.3:  GPA as a Function of IQ 
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4.14  Pearson r and restriction of the range of X 
 
Restriction of the range of X-values results in attenuation of the correlation between X and Y 
(i.e., the absolute value of r will be closer to 0).  This can be illustrated with a simple example.  
Figure 4.3 shows the relationship between IQ and grade point average (GPA) for a sample of 30 
students.  The Pearson r for these data is .702, so roughly 49% of the variance of the GPA scores 
is accounted for by the linear relationship between IQ and GPA (i.e., r2 = .492).   
 
But now suppose that you were to divide these 30 people into two groups on the basis of IQ.  
One group has IQ < 100, and the other has IQ greater than or equal to 100.  I did this, and 
computed the correlations for the two groups separately.  Here’s what I obtained, plus the results 
for the whole sample: 
 

Group Pearson r r2 p 
IQ < 100 .441 .194   .067 
IQ = 100 or more .461 .213   .131 
All students .702 .492 < .001 

 
Clearly, the linear relationship is much weaker when I restrict the range on X.  The proportion of 
variance accounted for by the linear relationship drops from almost 50% with the whole sample 
to somewhere around 20% when I restrict the range of IQ values. 
 
Why is it important to know that restriction of the range of X attenuates the correlation between 
X and Y?  One reason is that this phenomenon occurs pretty routinely in a lot of settings.  For 
example, you might expect to see a reasonably strong, positive correlation between high school 
grades and university grades.  However, only those students with good high school grades 
typically get into university.  Therefore, you are probably have restricted range on X, and the 
correlation may be quite a bit weaker than you anticipated. 
 

 
 
4.15  A final word of caution 
 
Consider the following example:  You compute the correlation between amount of study time 
(X) and performance on an exam (Y).  Your intuition probably tells you that there should be a 
positive relationship between these variables.  Furthermore, you probably suspect that increasing 
study time causes performance on the exam to improve. 
 
For the sake of argument, let us assume that this causal relationship does exist (i.e., increasing 
study time does in fact lead to improved performance on the exam).  Despite the existence of this 
causal relationship, it is entirely possible that your calculated value of r could indicate no 
correlation, or even a negative correlation. 
 
"HOW IS THIS POSSIBLE?", you ask, your arms gesticulating wildly.  Note that amount of 
study time is not the only variable that determines how well someone does on an exam.  Many 
other factors affect one's performance, not the least of which is intelligence (whatever that is). 
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The students in your sample could be divided into groups based on some measure of intelligence 
(e.g., Bright, Average, Poor).  Let us suppose that the brightest students spent the least time 
studying, and that the poorest students spent the most time studying.  That is, the amount of 
study time is negatively correlated with intelligence.  If this were so, and if mean performance 
was the same for all groups, you would probably calculate r = 0 approximately. 
 
Now imagine the same situation, but with the mean test scores ordered Bright > Average > Poor 
(which could well happen).  Now you may actually come up with a negative value or r, which 
would appear to suggest that the less time spent studying, the better one will do on the exam! 
 
In order to get a clear picture of what's going on here, you would have to take into account not 
only the amount of study time, but all other relevant variables as well.  You could "take them 
into account" by either controlling them (i.e., holding them constant, or equating them across 
groups); or by including them as a predictor variables, and using multiple 
regression/correlation procedures, which are discussed in another chapter. 
 
 
4.16  Linear regression and correlation using SPSS 
 
To access the linear regression dialog box in SPSS, click on Analyze Regression Linear.  
Then move your independent (or predictor) and dependent variables into the appropriate boxes.  
Various options are available by clicking on the Statistics, Plots, Save, and Options buttons. 
 
To generate a correlation matrix, click on Analyze Correlate Bivariate. 
 
To generate a scatterplot, click on Graphs Scatter.  After you have created your scatterplot, 
you may wish to add a regression line.  To do so, double-click on the scatterplot in the SPSS 
Output window to open the Chart Editor.  Then click on Chart Options, and put a check in the 
“Fit line” box.  Several lines (or curves) are available, but the least squares regression line is the 
default. 
 
TIP: If you don’t understand something in an SPSS dialog box, right-click it with the mouse 

to produce a brief explanation. 
 
An SPSS syntax file demonstrating simple linear regression and correlation can be downloaded 
from my homepage here: 
 

http://www.angelfire.com/wv/bwhomedir/spss/linreg.txt 
 
 

--------------------------------------------------------------------- 

http://www.angelfire.com/wv/bwhomedir/spss/linreg.txt
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Review Questions 
 
 1.  The most commonly used regression line is the least squares regression line.  Why it is 
called the least squares regression line? 
 
 2.  Why is it necessary to use one regression line for prediction Y from X, and another line for 
prediction of X from Y? 
 
 3.  Do the regression of Y on X and the regression of X on Y ever produce the same regression 
line?  If so, under what circumstances? 
 
 4.  What is homoscedasticity? 
 
 5.  What is a bivariate normal distribution? 
 
 6.  Assume that X and Y are both normally distributed, and that you have carried out the 
regression of Y on X.  If the number of X-Y pairs is quite large, approximately what percentage 
of the points in the scatter plot fall within (±):   
 
 a)  one standard error of the regression line?   
 b) two standard errors of the regression line? 
 c) 2.5 standard errors of the regression line? 
 
 7.  What is covariance?  How does it relate to Pearson r? 
 
 8.  What is another name for the covariance of a variable with itself? 
 
 9.  Why is r2 called the coefficient of determination? 
 
10.  Draw partitioning diagrams (i.e., partitioning of SS) for: 
 
 a)  the one-way ANOVA (if this has already been taught) 
 b)  simple linear regression 
 
11.  In linear regression, how many degrees of freedom are associated with: 
 
 a) SSregression ? 
 b) SSresidual ? 
 
12.  How can one test the significance of r2?  What is the null hypothesis for this test? 
 
13.  How is r2 related to the standard error of estimate? 
 

--------------------------------------------------------------------- 
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Appendix 1:  Mean and Individual Prediction Intervals 
 
 
 
DISCLAIMER: 

 
The material in this appendix is quite advanced, and is for your information 
only.  It will not be covered on the final exam. 
 

 
 
Two kinds of prediction intervals are available in SPSS scatterplots, mean and individual 
prediction intervals.  These are specific and extreme cases of a family of possible prediction 
intervals which are generated using a standard error computed as follows: 
 
  

2( )1 1( )

                 

new
pred new error

X

X X
s SE Y MS

m n SS
 −

= = ⋅ + +  
   

where  m = the number of new cases 
   n = the number of X-Y pairs used to create the regression model 
 
 
If you have the X-value for one new case, you would substitute m = 1 into the equation, and 
obtain the standard error that is used in computing the individual prediction interval. 
 
Substituting m = ∞ (∞ is the symbol for infinity), on the other hand, you would obtain the 
standard error used in calculating the mean prediction interval. 
 
Finally, note that the curvature of the prediction intervals (i.e., they get wider as you get further 
away from the mean of X) is due to the 2( )newX X−  in the numerator of the formula. 
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Appendix 2:  Herman Rubin on Linear Regression and Normality 
 
The following is from a post to usenet newsgroup sci.stat.edu: 
 
From: hrubin@odds.stat.purdue.edu (Herman Rubin) 
Subject: Assumptions for regression  Date: 1999/05/29 
Newsgroups: sci.stat.edu 
 
In article <7imc1r$rqh$1@usenet01.srv.cis.pitt.edu>, 
Richard F Ulrich <wpilib+@pitt.edu> wrote: 
>G. Anthony Reina (reina@nsi.edu) wrote: 
>: I have a regression that seems to fit the data well. The residuals don't 
>: appear to have any trends so I think what's left is just random (normal 
>: distribution) error. 
  
>: Is there a way that I can quantitatively test the residuals to see if 
>: they are truly in a normal disribution? 
 
 
> - I have read 5 responses and no one has mentioned "independence." 
>Dependency is more subtle, and (maybe) more damning to a simple model.  
  
>Residuals should not be correlated with X or with the sequence of 
>sampling.  Et cetera. 
 
 
It cannot be overemphasized that normality is NOT necessary for the 
validity of regression.  What has just been said is what is most  
important, that the disturbances (actual deviations from the "true" 
regression expression) must be uncorrelated with the "explanatory" 
variables. 
 
The precise probabilities of various tests do depend on normality, 
some more than others.  But regression has rather good robustness, 
by which I mean that the properties of the procedure do not depend 
much on those assumptions which one does not wish (or need) to make. 
 
--  
This address is for information only.  I do not claim that these views 
are those of the Statistics Department or of Purdue University. 
Herman Rubin, Dept. of Statistics, Purdue Univ., West Lafayette IN47907-1399 
hrubin@stat.purdue.edu         Phone: (765)494-6054   FAX: (765)494-0558 

 
The “precise probabilities of various tests” Professor Rubin refers to are p-values. 
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 Appendix 3:  Variance, covariance, and standard scores 
 
You may recall that the variance of a set of scores is equal to the sum of squared deviations 
about the mean divided by the degrees of freedom: 
 

 
2

2 ( )
1

XX X SS
s

n df
−

= =
−

∑  (4.29) 

 
If you have 2 sets of scores (X and Y), it is possible to calculate the covariance of the two sets of 
scores as follows: 
 

 
( )( )

1XY

X X Y Y SPCOV
n df
− −

= =
−

∑  (4.30) 

 
The covariance provides information similar to that given by Pearson r, the (linear) correlation 
coefficient.  And in fact, one version of the formula for calculating r is as follows: 
 

 XY
XY

X Y

COVr
s s

=  (4.31) 

 
From this formula, it should be clear that the difference between covariance and correlation is 
one of scaling:  The covariance is in raw score (i.e., original scale) units, whereas the Pearson 
correlation is in standardized (z-score) units.  
 
Just as an interesting side issue, note that the covariance of a set of scores with itself is equal to 
the variance of those same scores.  (Hey, don’t laugh!  You never know when a titbit like that 
will come in handy--e.g., when making small talk at a party.) 
 
The following equation was presented earlier in this chapter: 
 

 X
Y

SPb
SS

=  (4.32) 

 
Note that if you took the right-hand portion of equation 4.35, and divided both numerator and 
denominator by n-1, the equation for the slope could be rewritten as: 
 

 2
XY

Y
X

COVb
s

=  (4.33) 
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Appendix 4:  Pearson r and regression coefficients 
 
The relationship between the slope constants of linear regression and Pearson r may be useful in 
some situations: 
 

 Y
Y XY

X

s
b r

s
 

=  
 

 (4.34) 

 

 X
X XY

Y

s
b r

s
 

=  
 

 (4.35) 

 
Also note that the product of the regression coefficients from the regression of Y-on-X and the 
regression of X-on-Y equals r2: 
 

 2 2Y X Y X
Y X

X Y X Y

s s s s
b b r r r r

s s s s
     

= = =     
     

 (4.36) 

 


