Site hosted by Angelfire.com: Build your free website today!

 

 You  are here:    Home > Electronics> Semiconductor > The PN Junction

Semiconductors 

The PN Junction

Consider the silicon crystal represented to the right. Half is N-type while the other half is P-type. We've shown the two types separated slightly, as if they were two seperate crystals. The free electrons in the N-type crystal are represented by small black circles with a "-" sign inside to indicate their polarity. The holes in the P-type crystal are shown as small white circles with a "+" inside.

In the real world, it isn't possible to join two such crystals together usefully. Therefore, a practical PN junction can only be created by inserting different impurities into different parts of a single crystal. So let's see what happens when we join the N- and P-type crystals together, so that the result is one crystal with a sharp boundary between the two types.

You might think that, left to itself, it would just sit there. However, this is not the case. Instead, an interesting interaction occurs at the junction. The extra electrons in the N region will seek to lose energy by filling the holes in the P region. This leaves an empty zone, or depletion region as it is called, around the junction as shown to the right. This action also leaves a small electrical imbalance inside the crystal. The N region is missing some electrons so it has a positive charge. Those electrons have migrated to fill holes in the P region, which therefore has a negative charge. This electrical imbalance amounts to about 0.3 volt in a germanium crystal, and about 0.65 to 0.7 volt in a silicon crystal. This will vary somewhat depending on the concentration of the impurities on either side of the junction.

Unfortunately, it is not possible to exploit this electrical imbalance as a power source; it doesn't work that way. However, we can apply an external voltage to the crystal and see what happens in response. Let's take a look at the possibilities.