Site hosted by Angelfire.com: Build your free website today!

 

 You  are here:    Home > Electronics > Semiconductor > The PN Junction (continuation)

Semiconductors 

The PN Junction

Suppose we apply a voltage to the outside ends of our PN crystal. We have two choices. In this case, the positive voltage is applied to the N-type material. In response, we see that the positive voltage applied to the N-type material attracts any free electrons towards the end of the crystal and away from the junction, while the negative voltage applied to the P-type end attracts holes away from the junction on this end. The result is that all available current carriers are attracted away from the junction, and the depletion region grows correspondingly larger. There is no current flow through the crystal because all available current carriers are attracted away from the junction, and cannot cross. (We are here considering an ideal crystal -- in real life, the crystal can't be perfect, and some leakage current does flow.) This is known as reverse bias applied to the semiconductor crystal.

Here the applied voltage polarities have been reversed. Now, the negative volatge applied to the N-type end pushes electrons towards the junction, while the positive voltage at the P-type end pushes holes towards the junction. This has the effect of shrinking the depletion region. As the applied voltage exceeds the internal electrical imbalance, current carriers of both types can cross the junction into the opposite ends of the crystal. Now, electrons in the P-type end are attracted to the positive applied voltage, while holes in the N-type end are attracted to the negative applied voltage. This is the condition of forward bias.

Because of this behavior, an electrical current can flow through the junction in the forward direction, but not in the reverse direction. This is the basic nature of an ordinary semiconductor diode.

It is important to realize that holes exist only within the crystal. A hole reaching the negative terminal of the crystal is filled by an electron from the power source and simply disappears. At the positive terminal, the power supply attracts an electron out of the crystal, leaving a hole behind to move through the crystal toward the junction again.

In some literature, you might see the P-type connection designated the cathode of the diode, while the N-type connection is called the anode. These designations come from the days of vacuum tubes, but are still in use. Electrons always move from cathode to anode inside the diode.

One point that needs to be recognized is that there is a limit to the magnitude of the reverse voltage that can be applied to any PN junction. As the applied reverse voltage increases, the depletion region continues to expand. If either end of the depletion region approaches its electrical contact too closely, the applied voltage has become high enough to generate an electrical arc straight through the crystal. This will destroy the diode.

It is also possible to allow too much current to flow through the diode in the forward direction. The crystal is not a perfect conductor, remember; it does exhibit some resistance. Heavy current flow will generate some heat within that resistance. If the resulting temperature gets too high, the semiconductor crystal will actually melt, again destroying its usefulness.

Always be careful to pay attention to the maximum specifications of a diode, and be sure to keep the operating conditions of the diode well within the indicated limits.