Chernobyl
Power Plant Accident (construction)
|
Overview On April 26, 1986 most dangerous accident happened in Unit 4 of Chernobyl Nuclear Power Plant near Kiev. At the time of the Chernobyl accident the Soviet Nuclear Power Programme was based mainly upon two types of reactors, the WWER, a pressurised light-water reactor, and the RBMK, a graphite moderated light-water reactor. While the WWER type of reactor was exported to other countries, the RBMK design was restricted to republics within the Soviet Union. The Chernobyl Power Complex, lying about 130 km north of Kiev, Ukraine, consisted of four nuclear reactors of the RBMK-1000 design, Units 1 and 2 being constructed between 1970 and 1977, while Units 3 and 4 of the same design were completed in 1983. Two more RBMK reactors were under construction at the site at the time of the accident. The RBMK-1000 Reactor The RBMK-1000 (Fig) is a Soviet designed and built graphite moderated pressure tube type reactor, using slightly enriched (2 per cent uranium-235) uranium dioxide fuel. It is a boiling light water reactor, with direct steam feed to the turbines, without an intervening heat-exchanger. Water pumped to the bottom of the fuel channels boils as it progresses up the pressure tubes, producing steam which feeds two 500-MW(e) [megawatt electrical] turbines. The water acts as a coolant and also provides the steam used to drive the turbines. The vertical pressure tubes contain the zirconium-alloy clad uranium-dioxide fuel around which the cooling water flows. A specially designed refuelling machine allows fuel bundles to be changed without shutting down the reactor. The moderator, whose function is to slow down neutrons to make them more efficient in producing fission in the fuel, is constructed of graphite. A mixture of nitrogen and helium is circulated between the graphite blocks largely to prevent oxidation of the graphite and to improve the transmission of the heat produced by neutron interactions in the graphite, from the moderator to the fuel channel. The core itself is about 7 m high and about 12 m in diameter. There are four main coolant circulating pumps, one of which is always on standby. The reactivity or power of the reactor is controlled by raising or lowering 211 control rods, which, when lowered, absorb neutrons and reduce the fission rate. The power output of this reactor is 3,200 MW(t) [megawatt thermal] or 1,000 MW(e), although there is a larger version producing 1,500 MW(e). Various safety systems, such as an emergency core cooling system and the requirement for an absolute minimal insertion of 30 control rods, were incorporated into the reactor design and operation. The most important characteristic of the RBMK reactor is that it possesses a "positive void coefficient". This means that if the power increases or the flow of water decreases, there is increased steam production in the fuel channels, so that the neutrons that would have been absorbed by the denser water will now produce increased fission in the fuel. However, as the power increases, so does the temperature of the fuel, and this has the effect of reducing the neutron flux (negative fuel coefficient). The net effect of these two opposing characteristics varies with the power level. At the high power level of normal operation, the temperature effect predominates, so that power excursions leading to excessive overheating of the fuel do not occur. However, at a lower power output of less than 20 per cent of the maximum, the positive void coefficient effect is dominant and the reactor becomes unstable and prone to sudden power surges. This was a major factor in the development of the accident. |