Site hosted by Angelfire.com: Build your free website today!

 

nucan3.gif (11454 bytes)NÜKLEER ENERJİ SANTRALLARININ ÇEVREYE OLAN ETKİLERİ:

nuclear.jpg (4457 bytes)

NÜKLEER SANTRALLARIN ÇEVRESEL ETKİLERİ

ATMOSFERİN TERMİK TABAKALARINA BAĞLI OLARAK GAZLARIN DAĞILIMI

NÜKLEER ELEKTRİK SANTRALLERİ TEKNOLOJİLERİ HAKKINDA KISA BİLGİLER

NÜKLEER ELEKTRİK SANTRALLARININ ÇEVRE İLİŞKİLERİNİN TANIMI

ÇEVRE ETKİLERİNİN HESAPLANMASI

ÇEVRE ETKİSİNİN HESAPLANMASINA ÖRNEK

ressonancia.jpg (4368 bytes)

 

Son 25 yıl içinde gelişen çevre bilinci teknolojik gelişmelerin kaçınılmaz bir sonucudur. Gelişen teknoloji sadece çevrenin kirliliği üzerinde potansiyel bir tehlike değildir aynı zamanda gelişen teknoloji, ölçme sistemlerinin de daha hassaslaşmasını ve etki-tesir arasındaki ilişkilerin detayları ile aydınlatılmasına da yardımcı  olmaktadır.

Diğer bir ifade ile yaşadığımız ortamda herhangi bir yabancı maddenin var olup olmamasının ölçülmesinden öte, çok daha hassas ölçümler gerektiren birim zamandaki değişim oranları da ancak gelişen teknoloji sayesinde gerçekleştirilebilmektedir.

Temel prensip olarak doğada her aktivitenin çevreyi etkilediği kabul edilmekle birlikte bu etkilenmenin zararları bakış açısına göre değişmektedir. Doğayı canlıları ve yaşam koşullarını değiştirmeyen etkilerin en azından zararsız olduğu kabul edilmektedir. Buna karşı olarak geliştirilen bir başka görüş ise; etkilenme oranının zaten doğal ortamda mevcut olan değişim sınırları içerisinde kaldığı sürece doğal ortam tarafından kabul edilebilir veya izole edilebilir olacağıdır. Bu tartışmayı nükleer santral ile ilgili tartışma zeminine taşırsak ;

Doğal ortamda mevcut olan radyoaktivite;

  • Hava şartlarına bağlı olarak ( alçak basınç alanlarında havadaki radyoaktivitenin azalması veya yüksek basınç şartlarında doğal radyoaktivitenin artması gibi),
  • Coğrafi bölgeye bağlı olarak ( dağlık bölgeler, kıyı bölgeleri, toprak yapısı gibi)
  • Konut cinslerine göre ( toprak, betonarme,tahta yapılar gibi)
  • Kozmik ışınlamaya göre

değişmektedir.

Ayrıca insanlar yaptıkları aktiviteler ve aldıkları bazı tıbbi tedaviler sonucunda da bir miktar radyoaktif ışınlamaya maruz kalmaktadır. Şayet nükleer santrallardan zaman ve mekana göre çıkan atıklar çevreyi ve çevrede bu atıkların doğal olarak mevcut değişim bandı içinde kalıyor ise, çevrenin ve bu çevrede yaşayan canlıların nükleer santraldan örneğin radyoaktivite nedeniyle etkilenmeleri doğal değişimlerin ötesinde olmayacaktır.

Almanya’da yapılan bir çalışma; bir insanın yılda ortalama olarak maruz kaldığı doğal radyoaktif ışınlama etkisinin 2.4 mSv ( 4 saatlik bir uçak yolculuğu sırasında 0.02 mSv, göğüs röntgen filmi çektirmek suretiyle 0.5 mSv ve benzer faaliyetler sonucunda ortalama 1.58mSv), olduğunu ortaya koymaktadır.

Yaşam sırasında bir insanın maruz kaldığı ışınlama etkisi şu tablo ile gösterilebilir;

Son 25 yıl içinde gelişen çevre bilinci teknolojik gelişmelerin kaçınılmaz bir sonucudur. Gelişen teknoloji sadece çevrenin kirliliği üzerinde potansiyel bir tehlike değildir aynı zamanda gelişen teknoloji ölçme sistemlerinin de daha hassaslaşmasını ve etki-tesir arasındaki ilişkilerin detayları ile aydınlatılmasına da vesile olmaktadır.

Diğer bir ifade ile yaşadığımız ortamda herhangi bir yabancı maddenin var olup olmamasının ölçülmesinden öte, çok daha hassas ölçümler gerektiren birim zamandaki değişim oranları da teknoloji sayesinde gerçekleştirilebilmektedir.

Temel prensip olarak doğada her aktivitenin çevreyi etkilediği kabul edilmekle birlikte bu etkilenmenin zararları bakış açısına göre değişmektedir. Doğayı canlıları ve yaşam koşullarını değiştirmeyen etkilerin en azından zararsız olduğu kabul edilmektedir. Buna karşı olarak geliştirilen bir başka görüş ise; etkilenme oranının zaten doğal ortamda mevcut olan değişim sınırları içerisinde kaldığı sürece doğal ortam tarafından kabul edilebilir veya izole edilebilir olacağıdır. Bu tartışmayı nükleer santral ile ilgili tartışma zeminine taşırsak ;

Doğal ortamda mevcut olan radyoaktivite;

  • Hava şartlarına bağlı olarak ( alçak basınç alanlarında havadaki radyoaktivitenin azalması veya yüksek basınç şartlarında doğal radyoaktivitenin artması gibi),
  • Coğrafi bölgeye bağlı olarak ( dağlık bölgeler, kıyı bölgeleri, toprak yapısı gibi)
  • Konut cinslerine göre ( toprak, betonarme,tahta yapılar gibi)
  • Kozmik ışınlamaya göre

değişmektedir.

Ayrıca insanlar yaptıkları aktiviteler ve aldıkları bazı tıbbi tedaviler sonucunda da bir miktar radyoaktif ışınlamaya maruz kalmaktadır. Şayet nükleer santrallardan zaman ve mekana göre çıkan atıklar çevreyi ve çevrede bu atıkların doğal olarak mevcut değişim bandı içinde kalıyor ise, çevrenin ve bu çevrede yaşayan canlıların nükleer santraldan örneğin radyoaktivite nedeniyle etkilenmeleri doğal değişimlerin ötesinde olmayacaktır.

Almanya’da yapılan bir çalışma; bir insanın yılda ortalama olarak maruz kaldığı doğal radyoaktif ışınlama etkisinin 2.4 mSv ( 4 saatlik bir uçak yolculuğu sırasında 0.02 mSv, göğüs röntgen filmi çektirmek suretiyle 0.5 mSv ve benzer faaliyetler sonucunda ortalama 1.58mSv), olduğunu ortaya koymaktadır.

Yaşam sırasında bir insanın maruz kaldığı ışınlama etkisi şu tablo ile gösterilebilir;

Işınlama Türü:
Doğadan Kaynaklanan

 

Ortalama Efektif
Doz (mSv)

Kozmik ışınlar

 

0.3

Yeryüzü ışınlaması

 

0.5

Evlerde teneffüs edilen doğal Radon gazı

 

1.3

Doğal radyoaktif maddelerin vücutça alınması

 

0.3

     

Toplam

 

2.4

Işınlama Türü:
Medeni yaşamdan kaynaklanan

 

Ortalama Efektif
Doz (mSv)

Tıpta kullanılan ilaç ve teşhis cihazlarından,

 

1.5

Evlerde kullanılan maddelerden,

 

<0.02

Mesleki nedenlerden kaynaklanan,

 

<0.01

Nükleer silah denemeleri ( fall-out)

 

<0.01

Nükleer santrallardan kaynaklanan,

 

<0.001

Çernobilden kaynaklanan

 

<0.003

     

Toplam

 

1.553

Hiç şüphesiz bu değerler zaman, mekana ve kişiye göre farklılıklar gösterecektir. Bu nedenle bu değerler tamamen ortalama değerler olarak kabul edilmelidir.
Yukarıdaki tablolara baktığımız zaman nükleer santralların varlığı dolaysıyla insanların maruz kaldıkları radyoaktif ışınlamanın etkisinin önemsiz boyutlarda olduğu söylenebilmektedir.

Endüstriyel bir tesisin çevre etkileri üç aşamada irdelenir:

-Tesisin yapımı sırasında,
-Tesisin işletilmesi sırasında,
-Tesis hizmet dışı kaldığında ,

Bu şıklara ilave olarak ekonomik, sosyo-politik faktörler de göz önüne alınarak projede optimum şartlar sağlanır.
Ancak tesisin çevre etkileri incelenirken izlenen metotların getirdiği kıyaslama ve değerlendirme parametreleri göz önüne alınmadan bir tesisin diğer alternatifleri ile karşılaştırması veya yer seçiminin yapılması imkansızdır. Dolayısıyla tesis ile ilgili güvenlik raporlarının hazırlanmasında belli bir hesaplama yöntemi ve verileri mevcut olmalıdır. Uluslararası Atom Enerji Ajansı ve belli başlı gelişmiş ülkeler bu yöntemleri hazırlamışlardır. Ülkemizde bu konu ile sorumlu olan kuruluş ise Türkiye Atom Enerjisi Kurumu ( TAEK) dir.

Burada düşünülen üçlü karar yöntemini kısaca şöyle açıklamak mümkündür; Tesisin yapımı için işletici dolayısıyla yatırımcı kuruluş hazırladığı raporla önce inşaat, daha sonra işletme izni için gerekli resmi kuruluşlara başvurur. Bu raporlar bilirkişiler tarafından incelenir ve bu sayede bağımsız kontrol mekanizması tesis edilmiş olur. Bu arada tesisin yapımından etkilenecek olan kişilerin tesisin yapımı ile itiraz hakkı bulunmaktadır.

Bu nedenle kimin haklı kimin haksız olduğuna karar verecek bir organa ihtiyaç duyulduğu ortaya çıkmıştır. Bu organ ülkelere göre farklılıklar gösterebilir. Örneğin Almanya’da bu organ mahkemelerdir. Bu mahkemelerde bilirkişiler, itiraz sahipleri ve proje sahipleri dinlenir. Hakim geçerli olan kanun, yönetmenlik ve yöntemlere uygun olarak karar verir.

Farklı kişilerin farklı değerlendirmeleri olabileceği için karara bir üst mahkemede itiraz edilebilir. Sonuçta halk-mahkeme-işletici üçlü karar mekanizması kurulmuş olur. Yerel yönetimler alınan kararları uygulamakla yükümlüdür.

Almanya'da Mülheim-Kahrlich nükleer santralı zemin problemlerinin ortaya çıkması üzerine soğutma kulesinin 20 metre kadar ötelenmesi gerekmiş ve inşaat ve yeni projeye göre tamamlamıştır. Ancak projenin değiştirildiği öne sürülerek mahkemeye yapılan itiraz ile santralın izni iptal edilmiştir. Söz konusu santral halen işletmeye geçememiştir.

Görüldüğü gibi hukuki konular ön plana geçmekte ve karar süreci yıllarca uzayabilmektedir. Kararsız ortamlar daima yatırım maliyetini ve riskleri arttırır. Bu nedenle Almanya'da nükleer elektrik santrallarına olan yatırımlar cazibesini kaybetmiştir. Ülkemizde ise tahkim yasası ile bu riskin sıfırlanması beklenmektedir.

NÜKLEER SANTRALLARIN ÇEVRESEL ETKİLERİ

cevet1.gif (68301 bytes)

Şekil dikkatlice incelenirse nükleer santrallardan oluşabilecek radyoaktif etkiler iki farklı yolla çevreye ve insanlar dahil tüm canlılara ulaşmaktadır. Birinci yol ; Bacalardan çıkan emisyonların atmosferde taşınımı ile yer yüzeyine ve yeryüzeyindeki canlılara ulaşması, İkinci Yol ; Santraldan çıkan sıvı ve katı atıkların nehirler , göller veya denizlere ulaşması ile bu ortamlarda yaşayan canlıların ve yer altı sularının bu atıklardan etkilenmesidir. Yeryüzeyinde yaşayan insanların ve hayvanların doğal yaşamın sirkülasyonu nedeniyle her iki yol ile nükleer santraldan oluşabilecek radyoaktiviteden etkilenmesi mümkün olabilmektedir.

ATMOSFERİN TERMİK TABAKALARINA BAĞLI
OLARAK GAZLARIN DAĞILIMI

dag1.gif (63718 bytes)

Şekil de sunulan grafikler atmosferik yapıya bağlı olarak santraldan bırakılacak olan emisyonların nasıl bir hareket izleyeceğini göstermektedir. Garfiklerden de rahatlıkla görüleceği gibi; santral alanını etkileyen bir türbilans olması halinde emisyonların dağılımı son derece düzensiz olacaktır. Bu nedenle türbilans olması halinde dağılım ve konsantrasyon hesaplamaları için mutlaka lokal dağılım modelinin kullanılması gerekmektedir.

NÜKLEER ELEKTRİK SANTRALLERİ TEKNOLOJİLERİ HAKKINDA KISA BİLGİLER

 

Nükleer elektrik santrallarının konvensiyonel elektrik santrallardan en önemli farkı, kazan yerine ısı kaynağı olarak nükleer enerji reaktörü kullanmasıdır.

Batı dünyasında kullanılan belli başlı nükleer santral tipleri ;

  • Basınçlı su ( PWR),
  • Kaynar-su (BWR),
  • Ağır –su (CANDU),

Tipleridir. Nükleer reaktörde üretilen basınçlı –su ( birinci çevrim) BWR sisteminde direkt türbünlere gönderilir iken PWR sisteminde reaktör çıkışındaki ek ısı değişim ünitesinden ( ikinci çevrim) elde edilen basınçlı su türbinlere elektrik enerjisi üretimi için gönderilir. Dolayısıyla BWR sisteminde PWR sistemine nazaran türbinler radyoaktif bölgedir ve verim daha yüksektir.

Direkt radyoaktiviteye karşı reaktörlerde çeşitli engeller bulunur. Mevcut bu engeller ile santralların dışarıya doğrudan ışınlamaları engellenir. Bu nedenle ile santralda çalışanlar ve çevrenin herhangi bir şekilde etkilenmesinin engellenmesi planlanmıştır. Ancak konu olan engeller ve çevrim içerisinde kullanılan tüm malzemeler ( vanalar, borular ) teknik aksam olarak sızdırmaz olmalıdırlar.
Bunun için çeşitli kritik bölgeler için ölçme sistemleri tesis edilerek santral içinde muhtemel kaçaklar sürekli olarak gözlenir. Çünkü diğer endüstriyel kuruluşlarda olduğu gibi bir kaza hali yani kontrol dışı bir durum nükleer enerji ile uğraşan insanların asla kabul etmedikleri bir durumdur ve bu durum lisanslayıcı kuruluş tarafından da kesinlikle kabul edilmez. Sonuç olarak nükleer santrallar diğer endüstriyel kuruluşlarda asla yapılmayan inceleme ve testlere tabi tutularak, tesiste alınan önlemler ile “ normal işletme şartları “ dışında da kontrol altında tutulabilmesi hedeflenir.

nukleer2.gif (32886 bytes)
 

NÜKLEER ELEKTRİK SANTRALLARININ ÇEVRE İLİŞKİLERİNİN TANIMI

Tüm endüstri tesislerinde olduğu gibi nükleer santral teknolojisinde de “ çevreye mümkün olan en az atığı bırakmak” temel prensiptir. Ancak bu temel prensip içinde yer alan “ mümkün olan “ ve “ en ” tanımlamaları politik ve hukuki çevrelerde farklı anlamlar altında değerlendirilmektedir. Çevrede ölçülen çok az miktarlar doğal kalıntılar düzeyinde olunca etki-tesir bağlantısının kurulması güçleşmektedir. Ayrıca etki – tesir araştırmalarında da kullanılan istatistiki yöntemlerin sağlıklı olması gerekmektedir.

Nükleer Enerji santrallarında diğer konvensiyonel santrallarda olduğu gibi bir yanma olayı mevcut değildir. Santrallardan ve özellikle reaktör binasından birinci veya ikinci çevrimde herhangi bir şekilde olabilecek sızıntı veya kaçaklardan radyoaktif elementlerin proses buharı yoluyla kontrolsüz olarak çevreye dağılmaması için söz konusu binalar sürekli olarak alçak basınç altında tutulur. Diğer bir ifade ile bu binalardaki hava emilir, dışarıya göre basınçta düşük olacağından kaçaklardan dışarıya doğru değil içeriye doğru bir hava akımı oluşur.

Emilen hava ise sürekli olarak ölçüme tabi tutularak filtre edilir ve daha sonra kontrollü bir şekilde baca yoluyla çevreye bırakılır. Aynı şekilde sıvı atıklarda benzer yöntemler ile toplanır ve kontrollü olarak çevreye bırakılır.

 

ÇEVRE ETKİLERİNİN HESAPLANMASI

Bir nükleer santralın gerek yapımı için gerekse işletilmesi için mutlaka yetkili kuruluşlardan lisans alınması gerekmektedir. Bu yetkili kuruluşlar her ülkenin kendisinin tanımladığı kanunlara ve yönetmenliklere göre çalışmalarını sürdürür. Ülkemizde de bu konu ile ilgili kuruluş Türkiye Atom Enerjisi Kurumu ( TAEK) dur.

Tesis ile ilgili çevresel etki değerlendirmesi yapılırken ; işletmeden dolayı insan ve diğer canlıların sağlığına olan veya olabilecek muhtemel etkilerin irdelenmesinde takip edilecek yöntemler başlıklar altında gösterilir.
Şöyle ki ;

Kurulacak Tesisden:

  • Gaz atıkların ( havalandırma sonucunda emilen) havada meteorolojik şartlara bağlı olarak taşınımı.
  • Sıvı atıkların ( muhtemelen sızıntılar) nehir veya denize ulaşması neticesinde bunların çevreye dağılması ile insanların “ direkt olarak” “ teneffüs yoluyla "( inhalation) “ “ alınan, " besin yoluyla “ etkilenmeleri mümkün olabilecektir. Nükleer Sanralların Çevresel Etkileri başlığında verilen Şekil de bu durum daha detaylı olarak izah edilmiştir.

Nükleer santrallardan atılan gaz atıkların atmosferdeki dağılımı hiç bir zaman standart bir yol izlemez. Atmosferdeki dağılım tamamen rüzgar hızına ve yönüne ve atmosferin kararlılığına bağlı olarak değişir. Havada bulunan gazlar ve aerosol olarak tanımladığımız yüzen toz taneleri kuru hava şartlarında ( fallout ) veya yağışlarla ( washout) yer yüzeyine ulaşırlar. Günümüzde güvenilirliği deneylerle kanıtlanmış olan çeşitli metotlar ile yaklaşık 20 Km yarıçaplı bir alan içindeki havadaki veya topraktaki konsantrasyonu hesaplamak mümkündür. Daha uzak alanlar için ise meteorolojik veri sağlayan meteorolojik şebeke ile fiziksel ve matematiksel modellemelere ihtiyaç vardır.

Şekil-2 de atmosferik dağılım ile ilgili bazı şemalar yer almaktadır. Günümüzde yapraklı bitkilerin yapraklarında biriken veya kökleri vasıtası ile topraktan aldıkları radyasyon miktarları araştırmalar neticesinde bilinmektedir. İnsanların besin maddelerinden alabilecekleri radyasyon miktarları hesaplanırken kabaca yetişkin veya çocuk olarak en yüksek tüketim miktarları göz önüne alınarak hesaplanır.
Ülkeler arasında kullanılan kıstaslar nedeniyle farklı sonuçlar çıkabilir. Örneğin;

TÜKETİM

KİŞİ

YILLIK ( A.B.D.)

YILLIK (ALMANYA)

Et

Yetişkin/Çocuk

110/- Kg

150/20 Kg

Süt

Yetişkin/Çocuk

310/330 Litre

330/200 Litre

Balık

Yetişkin

21 Kg

20 Kg


Çevreye yayılan radyasyon enerjisi ( Gray) ile insanların etkilenmeleri ( Sievert) doğru orantılı olmayıp nüklid cinsine , ışınlama ( alfa, beta, gamma) türlerine ve organlarımızın bu nüklidleri farklı miktarlarda absorbe etmelerine göre değişmektedir. İstatiksel metotlar ile çeşitli araştırmalardan elde edilen parametreler ile bireylerin radyasyondan etkilenme dereceleri hesaplanabilmektedir. Bununla birlikte bu parametrelerin kullanılması daima bir uzmanlık gerektirir. Aksi halde değerlendirme yapılırken yöntemin ana prensipleri ile çelişkiye düşülür. Bir örnek olarak bir kişinin maruz kalacağı radyasyon etkisinin üst sınırı mSv ( mili Sievert /yıl) olarak;

ORGAN – DOZ

A.B.D. (1)

ALMANYA (2)

Tiroit Bezi

-

0.9 mSv/ y

Vücut

5 mSv/ y

0.3 mSv/y


ÇEVRE ETKİSİNİN HESAPLANMASINA ÖRNEK:

Nükleer enerji santralının projelendirilmesinde (design objectives) ve izin verilmesinde her ülkede farklı kriterler uygulanmaktadır. Örneğin ABD de aranan şartlardan birisi santral kontrol bölgesi dışındaki bir kişinin alacağı maksimum etken eşdeğer vücut dozunun 0.05 mSv altında olması istenmektedir. Almanya yönetmenliklerine göre civardaki tüm mevcut tesisler de hesaba katılarak santral sahası dışındaki bir insanın her türlü kaynaktan alabileceği eşdeğer vücut dozunun 0.3 mSv geçmemesi aranmaktadır. Bir örnek olarak bebeklerde yod-131 emisyonu neticesinde yod dozunu hesaplayalım:

Havada gazların dağılımı ve kuru çökelmesi (fallout) sonucunda yere yakın havadaki etken yod dozu:

D(mSv) = Q ( Bq)* (s/m3)*vg(m/s)*g(Svm2/Bq*1000(mSv/Sv)

Denklemi ile hesaplanır. Burada;

Q= Yod-131 emisyon miktarı

Vg = çökelme hızı

G= besin doz faktörü( nützung)

Yıllık yod 131 emisyon miktarı Q ve difuzyon faktörü denklemde çarpan olup

örnek olarak Q=10 Bq ve X= 1.8 *10 s/m3 alınabilir

 

SONUÇ:

Nükleer santrallarda elektrik santrallarında veya başka bir tesiste yapılmayan güvenlik çalışmaları ve çevrenin detaylı olarak incelenmesi esastır. Bununla birlikte nükleer santralların diğer sanayi veya enerji tesislerinden daha tehlikeli ve zararlı olduğunu söylemek hatalıdır. Nükleer endüstri her yönü ile hi-tech bir teknolojidir. Her kademede kalite ve güvenlik en ön planda tutulur. Bu bilincin olmadığı toplumlarda ise hiç bir zaman ve hiç bir konuda Hi-tech teknoloji ile tanışmaları söz konusu olamaz. Bu tür faaliyetler ise daima bir çıkmaz yol olarak kalmaya mahkum olur.

Çeşitli sivil toplum örgütleride yüksek teknoloji için toplumyapımızın uygun olmadığını halen bir çok ülkede meydana gelemeyecek bazı olayların ise ülkemizde sıradan olaylar olarak kabul edildiğini belirtmektedirler. Bu konuda yapılması gereken ise gelişmiş ülkelerdeki toplumların kalite anlayışlarını ve titizlik disiplinlerini kendi toplumumuzda da hayata geçirmenin yollarını aramaktır. Bunu sağlayabilirsek sadece nükleer santral değil her türlü Hi - tech üretimi yapabilmemiz mümkün olabilecektir.

Tüm dünyada sadece insanların sadece kendi ihtiyacı olan enerji ihtiyacını karşılayabilmek için bile yeni enerji kaynaklarına ihtiyacımız vardır. Bu ihtiyacı sadece klasik enerji kaynaklarından karşılamamız hem yeterli olmayabilir  hemde  bu tercih çok akılcı olmaz. Bu nedenle Nükleer enerji bu mantık çerçevesinde enerji kaynakları içerisinde yeni bir enerji kaynağı olarak değerlendirilmelidir. Hiç şüphesiz tercih edilip edilmemesi yine bizlere bağlıdır.

geri ileri

bulbout.gif (1940 bytes)

ANA SAYFA Nükleer Santralların Dünyada Gündeme Gelmesi ve Gelişim Süreci
Nükleer Santralların Ülkemizde Gündeme Gelmesi ve Gelişim Süreci Nükleer Santrallar İçin Uygulanan Meteorolojik Kriterler
Nükleer Santralların Çevreye Olan Etkileri ve Bunların İrdelenmesi Diğer Enerji Kaynaklarının Tanımı ve Çevre Üzerindeki Etkileri