Fibonacci Sayıları & Altın Oran
Leonardo Fibonacci



         
Fibonacci sayıları ve altın oran matematiğin en ilgi çekici konuları arasındadır. Leonardo Fibonacci 13. yüzyılda yaşamış bir İtalyan matematikçisiydi. Fibonacci (bu soyadının anlamı "Bonacci'nin oğlu"dur) 1202' de, 1228 yılındaki ikinci baskısı sayesinde günümüze kadar varolmayı sürdürmüş kitabı Liber Abaci'yi ("Abaküs konusunda bir kitap" olarak Türkçeye çevirilebilir) yazmıştır. Liber Abaci, Hint-Arap sayılar sistemindeki sayısal simgelerin (1,2,3,... sayıları) Avrupa'ya girmesinde oldukça önemli bir yer sahibidir. Oldukça büyük boyutlu bir kitaptır ve o dönemde bilinen matematiğin büyük bir bölümünün kayıtlarını içerir. Cebirin kullanımı , farklı önem ve zorluk derecesinde bir çok örnek de verilerek, çok özel bir yer tutmaktadır. Ancak bunların arasından bir tanesi ve yalnız bir tanesi diğerlerinin çok ötesinde ünlü olmuştur: Günümüze erişen 1228 yılındaki ikinci baskının 123-124. sayfalarında yer almaktadır ve tavşan üretmek gibi  matematikle pek ilgisi olmadığının düşünüldüğü bir konuyla ilgilidir. Temelde sorulan soru şudur; eğer bir çift tavşan her ay yeni bir çift tavşan doğurursa ve her yeni tavşan çifti kendi doğumlarından iki ay sonra yavrulamaya başlarsa, bir çift tavşandan bir yılda kaç çift tavşan üretilebilir? İlk ay yeni doğmuş bir çift tavşanımız olsun, tabi matematik bu yavruların anasız, babasız nasıl büyütülecekleri veya bu iki tavşanın da aynı cinsten olup olmaması konusuna pek girmez. İkinci ayda, bu tavşanlar daha yavrulamadıklarından, hala bir çift tavşanımız olacak. Üçüncü ayda bu tavşanlarımız yavrulayacağından iki çift tavşanımız olacak. Bu yeni doğmuş olan çift dördüncü ay doğurmayacak , oysa ana babaları yeniden bir çift yavru yapacak ve toplam üç çift tavşanımız olacak. Bu mantıkla düşünmeye devam edersek aşağıdaki sayı dizisini elde ederiz. Dizideki sayılar Ocak (ilk yavru çiftinin ortaya çıktığı ay) ile Aralık arasındaki takvim aylarının her birinde bizim kahraman tavşan çiftlerimizin sayısını vermektedir:

1,1,2,3,5,8,13,21,34,55,89,144

          Bu diziye baktığımız zaman onun basit bir kurala dayanarak oluşturulduğunu görebiliriz. Bu kuralı sözcüklerle ifade edersek; her sayı (ilk ikisi dışında) kendisinden önce gelen iki sayının toplamından oluşmuştur. Böylece, örneğin, dizinin sonundaki Aralık ayı sayısı , Ekim ve Kasım sayıları olan 55 ve 89 sayılarını toplayarak kolayca bulunabilir...

-1-

 

 

Sonraki sayfa

 
 

Ana sayfa

Programlarım

Atatürk & matematik

Matematik Tarihi
 

İncelenen Konular

Biyografiler

Javayla Matematik

Düşünce Yolu

Üniversite Hazırlık

Tartışma Panosu

Link Arşivi

Ziyaretci Defteri