Diferansiyel Denklemlerin Tarihi Gelişimi



B ) Leibnitz ve Diferansiyel Denklem
          Alman filozof ve matematikçi Leibnitz (1646-1716), diferansiyel denklemler üzerine çalışmalarına 1673 yılında başlamıştır. Bu konudaki çalışmalarını, 1684 ile 1686 yılları arasında yazdığı Aklaerudilorum adında bir eseri ile ortaya koymuştur.
          Leibnitz'in bu eseri, yayınlandığı yıllarda Almanya'da gereken ilgiyi görmemiştir. Fakat, İsviçre'de, Jaques ve Jean Bernouilli kardeşler tarafından, ilgiyle incelenmiştir. 1690 yılında, Jaques Bernouilli bu konuda önemli bir eser yayınlanmıştır. Yine aynı yıllarda; Leibnitz ve Bernouilli kardeşler tarafından, diferansiyel üzerinde önemli araştırmalar yapmışlardır. Yeni çözüm yolları geliştirmişlerdir.
          Leibnitz 1691 yılında; f (x,y) = f (x.g (y)) şeklinde olan diferansiyel denklemin çözümünü yapmıştır.

C) Euler ve Diferansiyel Denklem
          Alman matematikçi Leonard Euler (1707-1783), 1728 yılında, diferansiyel denklemler üzerinde geniş çalışmalar yapmıştır. Diferansiyel denklemlerin derecesini düşürme yöntemlerini geliştirmiştir. Seri çözümleri ve:

(1-x4)-1/2dx + (1-y4)1/2dy = 0

          şeklinde olan Abel'in teoreminin cebirsel çözümünü bulmuştur. Bu çözüm, eliptik fonksiyonlarda önemli rol oynamıştır.
    
Euler'in Denklemi
          ai ler sabit olmak üzere, denklemin genel şekli:

a0 xnyn + a1 xn-1yn-1 + ... + an-1 xy + an = q(x)

          olan bu denklem, y ye ve türevlerine göre lineerdir, fakat katsayılar değişkendir.

- 2-

 Önceki sayfa

(matematik tarihi genel sayfa)

 
 

Ana sayfa
 

Matematik Tarihi

İncelenen Konular
 

Biyografiler

Javayla Matematik

Düşünce Yolu

Üniversite Hazırlık

Link Arşivi

Ziyaretci Defteri