Fibonacci Sayıları & Altın Oran



1.000000
2.000000
1.500000
1,666666
1,600000
1,625000
1,615384
1,619047
1,617647
1,618181
1,617977
1,618055
1,618025
1,618037
1,618032
1,618034

          Bu sayılar gayet sıradan bir sayı gibi görünen 1.618034... sayısına doğru gidiyorlar. Gerçekte, bu "Fibonacci Sayıları" nı almayı sonsuza kadar sürdürme sonucunda bulunan sayılar (+1)/2 sayısına giderek daha da yaklaşırlar, bu sayının ondalık ifadesi de bilgisayarlarımızın verdiği tam hassasiyetle 1.618033989 olarak bulunmuştur. Fibonacci sayıları ailesi üç ayrı nedenle, yüzyıllardan bu yana yoğun bir ilgi odağı olmuştur. Birincisi; dizinin daha küçük üyelerinin doğada, beklenmedik yerlerde tekrar tekrar karşımıza çıkmasıdır; bitkilerde, böceklerde, çiçeklerde vb. İkinci neden oranların limit değeri olan 1.618033989 sayısının çok önemli bir sayı olmasıdır; genellikle "altın oran" olarak adlandırılan bu sayı, oyun kartlarının biçiminden Mısır'daki piramitlere kadar bir çok şeyin matematiksel temelini oluşturmaktadır. Üçüncüsü daha çok, sayıların kendilerinin, sayılar teorisinde beklenmedik biçimde farklı birçok kullanımı olan ilginç özellikleriyle ilgilidir. Önce doğada küçük Fibonacci sayılarıyla ne şekilde karşılaşıldığına bir bakalım. İlk olarak bir bitkinin sapındaki yaprakların, bir ağacın dallarının düzeninde hemen her zaman Fibonacci sayılarını bulursunuz. Eğer yapraklardan biri başlangıç noktası olarak alınmışsa ve bundan başlayarak, aşağıya veya yukarıya doğru, başlangıç noktasının tam olarak altında veya üstünde olan bir yaprak bulunana kadar yapraklar sayılırsa (sap çevresinde birden fazla dönmeye gerek olabilir) bulunan yaprak sayısı, farklı bitkiler, fidanlar ve ağaçlar için farklıdır, ancak her zaman bir Fibonacci sayısıdır. Dahası yaprakları sayarken süreç kendini tamamlamadan önce yapılan devir sayısı da bir Fibonacci sayısıdır. Ayrıca papatyaların da normal olarak bir Fibonacci sayısı kadar taç yaprağı vardır, tabi seviyor - sevmiyor diye koparılmamış ise:). Bu sebeple siz siz olun olaya matematiksel yaklaşarak genellikle elinize aldığınız papatyaya "seviyor" sözcüğüyle başlayın, çünkü bir papatyanın yaprak sayısı genelde Fibonacci sayılarından 21, 34, 55 ve 89 dur. Bunların 3/4 ü tek sayı olduğundan büyük ihtimalle sonuç seviyor çıkar, bu da benden size bir matematikçi adayı tavsiyesi...       

Önceki sayfa -3-

 

Sonraki sayfa

 
 

Ana sayfa

Programlarım

Atatürk & matematik

Matematik Tarihi
 

İncelenen Konular

Biyografiler

Javayla Matematik

Düşünce Yolu

Üniversite Hazırlık

Tartışma Panosu

Link Arşivi

Ziyaretci Defteri