Fibonacci Sayıları & Altın Oran



          Şekildeki ACGH dikdörtgeni bir altın dikdörtgendir. Siz de eğer bir altın dikdörtgenim olsun diyorsanız, önce bir ABCD karesi çizin. CD kenarının orta noktası F ise, CD kenarını FG=FB olacak şekilde uzatın. ACGH dikdörtgeni bir altın dikdörtgendir.  İlk bakışta o kadar övgüye değer bir özellik göze çarpmasa da, bir çok yönden ilginç bir yapıdır. Bunun nedeni günümüze kadar uzanan nesiller boyunca insanların çoğunun onu bütün dikdörtgenler içinde göze en hoş gelen dikdörtgen olarak görmesidir. Bunun sonucunda da günlük hayatımızda karşılaştığımız binlerce dikdörtgenin büyük bir bölümünün boyutları, altın dikdörtgeninkine yakındır. Bayraklar, kibrit kutuları, gazeteler, oyun kağıtları, yazı kağıtları ve sayısız başka binlerce örnek bu sınıftandır. Sanatçıların ve psikologların tam anlayamadıkları bir nedenle altın dikdörtgenin estetik bir çekiciliği vardır. Yunan mimarisi ve çömlekçiliğinin dışında heykel, resim sanatları, mobilya ve sanatsal tasarımlar için de doğrudur.  Parthenon tapınağının ön bölümünü eksiksiz olduğu dönemde, bir altın dikdörtgenin içine neredeyse tıpatıp girebilirdi. Altın orana Mısır piramitlerinin bazılarının boyutlarında da rastlanır. Leonardo da Vinci de altın dikdörtgenlerden çok etkilenmiş, hatta bu konuda hazırlanan kitaba yazılarıyla katılmıştır. Ayrıca aralarında Mona Lisa tablosunun da bulunduğu bir çok eserin tuvalin içine bu oran gözetilerek yerleştirildiği iddia edilir. Altın dikdörtgenin bir diğer özelliği de içinden bir kare attığınız zaman geriye kalan dikdörtgenin de bir altın dikdörtgen olmasıdır. Şekildeki ACGH dikdörtgeninden ABCD karesini atarsak geriye kalan BHDG dikdörtgeni de bir altın dikdörtgendir. Bu işlemi istediğimiz kadar devam ettirebiliriz, ve her seferinde bir öncekinden daha küçük altın dikdörtgenler elde ederiz. Bunlar içeriye doğru bir sarmal oluşturarak sonuçta bir noktaya yönelirler. Eğer giderek küçülen bu karelerin veya dikdörtgenlerin köşelerini veya merkezlerini sırasıyla birleştirirsek altın sarmal olarak bilinen bir sarmal elde etmiş oluruz. Bu sarmal öyle herhangi bir sarmal değildir. Özel bir sarmaldır ve daha öncede bahsettiğim ayçiçeğindeki sarmalın aynısıdır. Matematiksel olarak bu sarmala eşit açılı sarmal ya da logaritmik sarmal adı verilir. Logaritmik sarmal denilmesinin nedeni, onu en basit biçimde ifade eden cebirsel denklemlerin logaritma ifadelerinin kullanılarak yazılmasındandır. Eşit açılı sarmal denilmesinin nedeni ise sarmalın merkezinden çizilen bir düz doğrunun sarmalı hep aynı açıda kesmesidir. Bu şekilde çizilen başka bir doğru da aynı şeyi yapar... 

Önceki sayfa -6-

 

Sonraki sayfa

 
 

Ana sayfa

Programlarım

Atatürk & matematik

Matematik Tarihi
 

İncelenen Konular

Biyografiler

Javayla Matematik

Düşünce Yolu

Üniversite Hazırlık

Tartışma Panosu

Link Arşivi

Ziyaretci Defteri