Site hosted by Angelfire.com: Build your free website today!
E-mail Webmaster
_______________
Navigation

Home
________________
Recent Additions

________________
English Section

TI Graphing Calculators
TI Program Descriptions

TI Programs
TI Programming Keystrokes

Brief User Guides
TI-82
TI-82 Statistics
TI-83 Plus Series

TI-83 Plus Statistics
TI-83 Plus Finance APP
TI-83 Plus Busines & Economics
TI-83 Plus Lin Prog
TI-83 Plus Geometry
TI-89 User Guide
TI-89 Statistics
TI-89 Finance
Arithmetic of  Lists

TI FAQs
For Beginners
More Detailed Page 1
More Detailed Page 2
TI-89 FAQs

Links to  Guidebooks by TI
TI-82
TI-83 Plus

Casio Graphing    Calculator

Casio Program Descriptions

Casio Programs
CFX-9850 & CFX-9750

Brief  Guides

CFX-9850 & CFX-9750
User Manual

Statistics Guide

Casio Programming Keystrokes
________________
Brief Guides Other Calculators
HP 43S Calculator

Scientific Calculators
FAQs for Scientific Calculators

===============

Sección Española

FAQs en Español
FAQs Basicos
Mas Dificil Pagina 1
Mas Dificil Pagina 2

Guías en Espaňol
TI-82 Espanol
TI-82 Estidisticas
TI-83 Plus Espanol
TI-83 Plus Estidisticas
TI-83 Plus Guía Financiera
TI-89 Titanium Guía
TI-89 Estidisticas
TI-89 Guía Financiera

 

Casio Calculadoras

Breve Guía Español
Cfx-9850 & Cfx-9750

Casio FAQs en Espanol

Calculadoras Científicos

FAQs en Espanol
________________
Links
Programs at Other Sites

Links to Tutorials

  

TI-82 Gauss & Gauss Jordan Elimination (rref & ref)

Application:  Notice that this program is not listed for the TI-83 Plus. It will work for the TI-83 series, but since rref and ref are built in on the TI-83, there is not much need for it.  I would mention that this offers a couple things that are not in the TI-83 Plus. For example, Upper Triangle display, and better treatment of non-orthodox matrices

Memory usage:  This program uses 972 bytes of memory.  I estimate that an inexperienced programmer can enter it in about 35 to 40 minutes.

Running the Program: First store your matrix in position [A]. After starting the program, the matrix is displaye, for checking if desired, and the program is paused.  A menu is then presented that allows selection of either rref,  ref, or upper triangle.   As usual with matrices, I recommend that when you enter a new matrix, you enter each element, rather than just replacing those that are different.  The answer is displayed in fractions.  Engineering and science students and others who prefer decimals, just look at matrix [B].  The fractional answer is not stored in a matrix; only displayed on the home screen. 

Comments: This program operates similar to the ref and rref functions on the TI-83 Plus with some additions.  There should not be any divide-by-zero errors.  If you have any problems, please send an e-mail to me, the Webmaster.  I would also appreciate any suggestions you might have for improving the coding.   STCC students, please e-mail me at: fkizer@southwest.tn.edu

Revisions:  Version V1.1, date 12/13/04.  Version V1.2, 10/7/04.  There are some fairly significant changes from V1.1 to V1.2.  The working matrix has been changed from [A] to [B], and several lines have been added at the end to correct for the annoying characteristic the TI-82 has of displaying a number such as 1.2E-14 for 0.  Version 2.0, date 2/23/05 has the changes mentioned above.  There are no keystrokes listed for this program.  After 4/28/05, keystrokes will no longer be included in programs.


Program: TI82GsJr
:Disp "F KIZER"
:Disp "V 2.0 2235"
:Lbl 0
:0→J
:0→K
:dim [A]→L1
:L1(1)→R
:L1(2)→C
:[A]→[B]
:Pause [B]
:For(K,1,C-2)
:0→P
:For(J,K,R)
:If [B](K,K)≠1 and [B](J,K)=1 and P=0
:Then
:rowSwap([B],J,K)→[B]
:P+1→P
:End
:If [B](K,K)=0 and [B](J,K)≠0
:Then
:rowSwap([B](J,K)→[B]
:End:End
:For(J,K+1,R)
:-[B](K,K)→M
:[B](J,K)→N
:If M≠0 and N≠0
:Then
:*row(M,[B],J)→[B]
:*row+(N,[B],K,J)→[B]
:End:End:End
:ClrHome
:Output(2,1,"1:RREF")
:Output(3,1,"2:REF")
:Output(4,1,"3:UP TRIANG")
:Input "ENTER NO."  S
:If S=3 and C≤5
:If S=3
:Goto 7
:If C>R+1
:Goto 6
:For(K,1,C-1)
:[B](K,K)→Q
:If Q≠0 and Q≠1
:Then
:*row(1/Q,[B],K)→[B]
:End:End
:If S=2 and C≤R
:Goto 5
:If S=2:Goto 7
:If  C≤R
:Goto 4
:R-1→W
:For(K,C-1,2,-1)
:For(J,W,1,-1)
:If [B](K,K)≠0 and [B](J,K)≠0
:Then
:-[B](J,K)/[B](K,K)→T
:*row+(T,[B],K,J)→[B]
:End:End
:W-1→W
:End
:If C=R+1
:Goto 7
:Lbl 4
:If C≤R
:Then
:C-2→W
:For(K,C-1,2,-1)
:For(J,W,1,-1)
:If [B](K,K)≠0 and [B](J,K)≠0
:Then
:-[B](J,K)/[B](K,K)→Y
:*row+(Y,[B],K,J)→[B]
:End:End
:W-1→W
:End

Lbl 5
:If C≤R
:Then
:C-1→K
:For(J,C,)
:If  [B](K,K)≠0 and [B](J,K)≠0
:Then
:-[B](K,K)→D
:[B](J,K)→E
:*row(D,[B],J)→[B]
:*row+(E,[B],J,K)→[B]
:End:End:End
:Lbl 6
:If C>R+1
:Then
:For(K,1,R)
:B(K,K)→Q
:If Q≠0 and Q≠1
:Then
:*row(1/Q,[B],K)→[B]
:End:End:End
:If S=1 and C>R+1
:Then
:R-1→Z
:For(K,R,1,-1)
:For(J,Z,1,-1)
:If [B](K,K)≠0 and [B](J,K)≠0
:Then
:-[B](J,K)/[B](K,K)→G
:*row+(G,[B],K,J)→[B]
:End:Rnd
:Z-1→Z
:End:End
:Lbl 7
:For(K,1,C)
:For(J,1,R)
:[B](J,K)→H
:If √(H2)<1E-7
:Then
:0→[B](J,K)
:End:End:End
:ClrHome
:Pause [B]►Frac


New 4/18/05
Last Revised:  No Rev